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Executive Summary

The purpose of this report is to estimate the vaiue of avoiding reductions in bag limits for king mackerel, red
snapper and gag in the southeastern United States. The data used are from the 1997 Marine Recreational Fishery
Statistical Survey (MRFSS) and the Add-On MRFSS Economic Study (AMES). During 1997-98 over 10,000
telephone follow-up interviews were conducted with MRFSS intercept respondents who agreed to be
interviewed. These surveys elicit information on willingness to pay for permits that avoid reductions in bag
limits, questions related to reasons for an unwillingness to pay, and contingent behavior from past and future
regulations. The contingent valuation method allows the determinants of willingness to pay to be estimated by
regression analysis. Through regression analysis the marginal value of one-fish reductions in bag limits are
estimated for king mackerel and red snapper.

We develop theoretical and econometric models of willingness to pay. We develop theoretical
definitions of willingness to pay to avoid bag limits in order to develop hypotheses about the magnitude of
willingness to pay bids and specify the empirical willingness to pay models. We define the option price as the
willingness to pay under demand uncertainty. The demand uncertainty arises from the species targeting decision.
The key component of this model is the inclusion of the probability of participation, or targeting decision, as an
independent variable in empirical willingness to pay models.

We present a general econometric specification of the willingness to pay for changes in bag limits. The
model depends on the number of willingness to pay questions offered to each individual. The primary
econometric model employed is the Tobit which allows for censoring at zero willingness to pay. We also
consider the Heckman sample selection model and the double hurdle model.

The willingness to pay data is summarized by frequencies and a variety of univariate statistics. We find
that more than 70% of the willingness to pay values are zero. Most zero willingness to pay respondents answer
in this way because they do not target king mackerel, red snapper, or gag. We also define potential protest bids
as those zero willingness to pay values which are provided because the respondent considers the special permit
unfair or does not agree with it. Given another type of policy, these respondents might have a positive
willingness to pay. We also identify potential outliers. These are respondents who are willing to pay greater than
$100 for the permit.

We estimate Tobit, Heckman, and double hurdle models of willingness to pay for avoidance of
reductions in king mackerel, red snapper, and gag bag limits. The Tobit model statistically dominates the
Heckman and double hurdle models. We find that the king mackerel and red snapper willingness to pay values
are valid measures of economic value. Willingness to pay increases with the magnitude of the bag change and
with the probability

that the respondent would target the species. These results conform to economic theory. The gag willingness to
" pay values are not valid measures of economic value.

In comparisons of the models employing the full and trimmed (deleting protests and outliers) samples,
in general, the trimmed data leads to smaller coefficient estimates. For king mackerel, income is a determinant
of willingness to pay for the full sample but not for the trimmed sample. For red snapper, the probability of
participation is a determinant of willingness to pay for the trimmed sample but not for the full sample. Since
theory can not guide the selection of the sample and neither dominates the other statistically, we focus on the full
sample because it is not subject to potentially ad-hoc decisions about protests and outliers.

Based on the theoretical model we expect willingness to pay to increase with the hypothetical change in the bag
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limit. However, the pattern of willingness to pay estimates does not conform to expectations, especially for red
snapper. In this case, willingness to pay for a 5-fish bag change is less than willingness to pay for the 2-fish and
3-fish bag change. In the empirical models we find a related “zero bag” effect for both king mackerel and red
snapper. Willingness to pay increases with the size of the bag change until the maximum bag change.
Respondents who are given a scenario in which the future legal bag limit is zero fish, but are then told that they
can purchase a permit to legally catch the current number of legal fish, are willing to pay zero dollars.

We estimate the marginal effects and 95% confidence intervals of the coefficient on the bag change on
willingness to pay. The marginal effect is the willingness to pay for avoiding a one-fish reduction in the bag
limit. The full data king mackerel marginal effects are $2, $5, $4, $4, $4, $3, $0 and $3 for anglers intercepted
in Alabama, Florida (East Coast), Florida (West Coast), Georgia, Louisiana, Mississippi, North and South
Carolina. The full data red snapper marginal effects are $0, $2, $1 and $2 for anglers intercepted in Alabama,
Florida (West Coast), Louisiana and Mississippi. However, none of the differences are statistically significant.
In general, the trimmed data leads to lower estimates of the value of a one-fish reduction in the bag limit.

We extend these results with two additional sets of models. We estimate bivariate Tobit willingness to pay
models for king mackerel and red snapper in which the correlation across willingness to pay questions is
accounted for. The bivariate Tobit is an improvement over the independent Tobit models. The king mackerel
willingness to pay to avoid a one-fish bag change from the bivariate Tobit are substantially smaller than those
from the independent Tobit models. The red snapper willingness to pay estimates are of the same magnitude as
from the independent Tobit.

We also estimate joint targeting and willingness to pay models for red snapper and king mackerel in which the
correlation across these two decisions is accounted for. In this bivariate model, the probit model for participation
and the Tobit model for willingness to pay are estimated jointly. We find that the participation and willingness
to pay decisions are correlated for the king mackerel sample. We find some minor differences in option price
estimates between the independent and joint models. We find that the participation and willingness to pay
decisions are not correlated for the red snapper sample.
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Chapter 1
Introduction

The purpose of this report is to estimate the value of avoiding reductions in bag limits for king mackerel
(Scomberomorus cavalla), red snapper (Lutjanus campechanus) and gag (Mycteroperca microlepis) in the
southeastern United States. The data used are from the 1997 Marine Recreational Fishery Statistical Survey
(MRFSS) and the Add-On MRFSS Economic Study (AMES). The AMES data consists of three parts, the
Intercept Survey, the Add-On Economic Intercept Survey, and the Add-On Telephone Follow-Up to the
Intercept Survey. The telephone follow-up contains a series of contingent valuation method (CVM) questions
that directly elicit the willingness to pay for reductions in bag limits for red snapper, king mackerel and gag.

During 1997-98 over 10,000 telephone follow-up interviews were conducted with MRFSS intercept respondents
who agreed to be interviewed. These surveys elicit information on willingness to pay for permits that avoid
‘reductions in bag limits, questions related to reasons for an unwillingness to pay, and contingent behavior from
past and future regulations. The CVM allows the determinants of willingness to pay to be estimated by
regression analysis. Economic theory guides the empirical analysis. Through regression analysis the marginal
value of one-fish to three-fish reductions in bag limits will be estimated for king mackerel and one-fish to five-
fish reductions for red snapper and gag.

The AMES telephone survey includes a series of CVM questions concerning red snapper, king mackerel, and
gag. Each angler provides 2 or 3 willingness to pay bids. South Atlantic anglers provide one bid (king
mackerel), Gulf coast anglers provide two bids (king mackerel and red snapper) and Gulf coast Florida anglers
provide 3 bids. The red snapper and king mackerel willingness to pay question is open-ended:

“The current bag limit for [red snapper/king mackerel] is [STLIMIT] fish per day. it may be necessary
in the future to reduce the bag limit to [VER_RS/VER_KM] fish. Suppose you could purchase a
special annual permit that would allow you to keep [STLIMIT] fish per day while all anglers who did
not purchase the permit would only be allowed to keep [VER_RS/VER_KM] fish per day. The
[VER_RS/VER_KM] fish bag limit would be your daily limit for the year. How much would you be
willing to pay for this special permit?”

For red snapper the variable STLIMIT is equal to 5 and the variable VER_RS varies from 0 to 4. Only Gulf
coast anglers are asked about red snapper. South Atlantic and Florida anglers are asked a similar open-ended
question about gag. For king mackerel the variable STLIMIT is equal to 3 for anglers that were intercepted in
Georgia, North Carolina, and South Carolina and 2 for anglers intercepted in Florida, Mississippi, Alabama, and
Louisiana. The variable VER_KM is randomly assigned and can take on values of 0, 1, and 2 for anglers
intercepted in states with a bag limit of 3 and 0 and 1 for anglers intercepted in states with a bag limit of 2.

The willingness to pay question for gag is also open-ended:

“Another type of special permit might apply for gag. If it was necessary in the future to reduce the
number of gag kept under the aggregate grouper bag limit to [LIMIT], how much would you pay to
purchase a special annual permit that would allow all of your five fish to be gag?”

The LIMIT variable ranges from 0 to 4.



The Report

In the rest of this report we present theoretical and econometric models of willingness to pay and describe the
data and results. The purpose of Chapter 2 is to develop theoretical definitions of willingness to pay to avoid bag
limits in order to develop hypotheses about the magnitude of willingness to pay bids and specify the empirical
willingness to pay models. We define the option price as the willingness to pay under demand uncertainty. The
demand uncertainty arises from the species targeting decision.

In Chapter 3 we present a detailed summary of the willingness to pay data. It is summarized by frequencies and
a variety of univariate statistics. We consider reasons for zero willingness to pay values, reactions to zero bag
limits, protest bids and outliers. We also summarize the construction of avidity weights, data imputation for
missing values, and the independent variables.

In Chapter 4 we present a general econometric specification of the willingness to pay for changes in bag limits.
The model depends on the number of willingness to pay questions offered to each individual. The primary
econometric model employed is the Tobit which allows for censoring at zero willingness to pay. We also
consider the Heckman sample selection model and the double hurdle model.

In Chapter 5 we present Tobit, Heckman, and double hurdle models of option price (i.e., willingness to pay
under uncertainty) for avoidance of reductions in king mackerel, red snapper, and gag bag limits. We estimate
the marginal effects and 95% confidence intervals of the coefficient on the bag change independent variable on
the option price. The marginal effect is the option price of avoiding a one-fish reduction in the bag limit.

In Chapter. 6 we estimate joint willingness to pay models for king mackerel and red snapper in which the
correlation across willingness to pay questions is accounted for. We also

estimate joint targeting and willingness to pay models for red snapper and king mackerel in which the
correlation across these two decisions is accounted for.

In Chapter 7 we present a summary and conclusions. We also present an policy illustration in order to
demonstrate how these results might be used.



Chapter 2
Theoretical Model

Estimation of the contingent valuation data will be guided by economic theory. The purpose of this chapter is to
develop theoretical definitions of willingness to pay to avoid bag limits, use these definitions to develop
hypotheses about the magnitude of willingness to pay bids and specify the empirical willingness to pay models.

The Model

The utility of the angler depends on species specific fishing trips and catch (including harvest and catch and
release) rates

2.1 U= u(X,Q,R)

where U is utility, u(.) is the utility function, X is a vector of recreational fishing trips, X = [X;], wherei=1, ...
N species, j = 1, ..., J sites, Q = [Q;] is a vector of i, j per trip harvest rates, R = [R;] is a vector of i, j per trip
catch and release rates. Utility is increasing in trips, harvest per trip, and catch and release per trip.

The per trip catch rates depends on inputs in a household production function

22
R, =ry(k, L, | d)+ ¢,
where q;(.) is the expected harvest rate, r;(.) is the expected catch and release rate, &, and &, are mean zero

random error terms, k is a vector of capital inputs including a boat and other gear, £ is a vector of labor inputs
including time spent fishing, h;; is the species stock (which could be measured as the historic harvest rate) of
species i at site j. The harvest rate is conditioned on constraints and technology. The harvest constraint is by, the
daily bag limit of species i at site j, and d is a set of preference and technology variables including fishing
experience. Catch and release does not depend on the bag limit. The trip harvest and catch and release is
increasing in capital and labor inputs and species stock. Hereafier, the subscripts i, j and all arguments other than
the bag limit will be dropped for notational simplicity except when needed.

While actual harvest, Q is an integer variable (e.g., Q =0, 1, 2, ...), expected harvest, q, is a continuous variable.
Therefore, the marginal effect of a reduction in the bag limit on harvest is positive or equal to zero

dg=0 ifq< b
23 Ay . oA
db|>0 ifq2b
~where b is the reduced bag limit. For those “expert” anglers who tend to harvest and keep their daily limit,

g 2 b, adecrease in the bag limit will decrease harvest. For those “non-expert” anglers who tend to harvest

less than the reduced daily bag limit, g < b , a decrease in the bag limit will not decrease harvest. For these
anglers, the daily bag limit is non-binding and will not affect their fishing trips.



Substitution of the household production functions into the utility function yields

2.4 U= u(X, q(b),r)

with all arguments other than the bag limit suppressed for simplicity. Anglers are constrained by the fishing
budget, y = p’X, where p is a vector of i, j travel costs, p = [p;]. Note that the targeting of different species will
have little effect on travel costs, which primarily depends on distance from the angler’s residence to the fishing
site. Maximization of angler utility subject to the budget constraint yields the indirect utility function

v(p,q(b),r,y) = max U(X,q(b),r)
st.y=p'X

2.5

where v(.) is the indirect utility function which is decreasing in p, and increasing in q, r, and y. The marginal
utility of a change in the bag limit is equal to the marginal utility of harvest multiplied by the marginal effect of
the bag limit on harvest

2.6 - =

It is easily seen that the bag limit only affects the utility of expert anglers for whom the marginal effect of the
bag limit is positive. For non-expert anglers the bag limit constraint is non-binding and a decrease in the bag
limit yields no less utility. Similarly, increases in the bag limit will not be binding and will have no effect on

non-expert angler utility.

The Marshallian demand function for site and species specific trips is found by Roy’s identity

Lad
P
x»

%

The demand for trips is decreasing in the own-travel costs, and increasing in harvest of the target species, catch
and release of the target species, and the fishing budget. Trips are increasing in cross-travel costs for substitute
sites. Harvest and catch and release of other species may have positive or negative effects on species specific
trips depending on substitution and complementarity relationships between species.

2.7 - = x(paq(b)aray)

Assuming the bag limit is constant across sites, the effect of a bag limit on species specifc trips is

& X oq
2.8 =
ob g ob
where — > 0 isthe marginal effect of harvest on trips. Since the marginal effect of the bag limit on harvest,

q



oq

——, is equal to zero for non-expert anglers and greater than zero for expert anglers, the marginal effect of the

bag limit on trips is greater than or equal to zero, -0;;5 2 0. The marginal effect of the bag limit on trips is
equal to zero for non-expert anglers and equal to the marginal effect of harvest on trips for expert anglers.
Willingness to Pay from Trip Behavior

The willingness to pay to avoid a reduction in the bag limit can be defined using demand theory. The willingness
to pay for trips is the consumer surplus of site and species specific trips

2.9 CS. =

y

x,(.)dp

where CS;; is the consumer surplus and ﬁ is the choke price. The effect of the change in the bag limit on the

willingness to pay for trips is equal to zero for non-expert anglers. The effect of the change in the bag limit on
the willingness to pay for trips for expert anglers is the change in the consumer surplus of site and species
specific trips -

pakd)
2.10 - ACS; = I jxy(.)dpdq

P ab)
where b is the current catch rate and ACS i is the change in consumer surplus.

The effect of a bag limit on consumer surplus for expert anglers also depends on the utility functions of
heterogeneous anglers and other fishing behaviors. Anglers who receive no utility from catch and release,

ov

— = (), and who are willing to substitute secondary species for the target species, will target other species at

the same or other sites when faced with a reduction in the bag limit for the target species. If the marginal utility
of the secondary species (species 2) is less than the marginal utility of the target species (species 1),

o ov
—— > ——, the number of trips targeting species 1 will fall and A CS > (. However, if the species

dq, o9,
are perfect substitutes, the reduction in the bag limit on species 1 w1ll have no effect on species 1 trips. In this

caseACSij = 0.

'Expen anglers who gain utility from catch and release of the target species will increase their catch and release
per trip with a decrease in the daily bag limit. If the marginal utility of harvest of the secondary species is greater
o o

than the marginal utility of catch and release of the target species, ——— > ——, then species specific trips will

aq, o



falland ACS i > 0 .1fthe marginal utility of catch and release and the mai'ginal utility of harvest of the
N o

aq,

species 1 will have no effect on species 1 tripsand ACS' i~ 0.

target species are equal, , these behaviors are perfect substitutes. The reduction in the bag limit on

1

Finally, species specific trips will increase if the goal of the expert angler is to maximize the aggregate harvest
of the targeted species. In this case the angler will substitute trips for harvest per trip when the bag limit is
reduced. For example, if an expert angler takes 4 king mackerel trips and harvests 3 fish per trip a reduction in
the bag limit to 2 fish per trip might prompt an increase in trips. The angler who wants 12 fish in the freezer will
take an additional 2 trips for a total of 6 king mackerel trips. In this case the willingness to pay to avoid the bag
limit reduction will be greater than or equal to the increased trip expenditures.

Willingness to Pay from Contingent Valuation

Willingness to pay to avoid the bag limit reduction can also be defined directly through the properties of the

N

indirect utility function. Dividing the marginal utility of harvest, E— , by the marginal utility of income, 5 ,

yields

lad
q
2.11 mWTPq =2
oy

where mWTP, is the marginal willingness to pay for additional harvest. Likewise, for reductions in q, mWTP, is
the willingness to pay to avoid decreases in harvest.

The value of a change in the bag limit is equal to the marginal utility of a change in the bag limit divided by the
marginal utility of income

4zl
dq b
v

%

where mWTP, is the marginal willingness to pay for a change in the bag limit. Afier rearranging, it can be seen
that the marginal willingness to pay for a change in the bag limit is equal to the marginal willingness to pay for a
change in the harvest multiplied by the marginal effect of the bag limit on catch

»
2.13 mWTP, = % éq—= mWITP, —-
&

2.12 mWTPF, =



Therefore, on average, the marginal willingness to pay of a change in the bag limit is less than the marginal

willingness to pay of a change in harvest. For non-expert anglers, —— = (} , and mWTP, is equal to zero. For

b

expert anglers, —ﬁz 2 0, and the marginal value of the bag limit is equal to the marginal value of harvest.

The willingness to pay values defined are for use values. Non-use values are also feasible. For example, in the
case of a recreational quota’, the willingness to pay of both expert and non-expert anglers might contain positive
value due to a stock effect. With a quota, a limited number of permits will be sold per year. Purchase of a permit
to harvest, say, 3 fish when expected harvest is less than 3 fish is rational if this leads to increased recruitment
and increased future catch. These anglers have a conservation value. Due to data limitations, these subtle effects
will be difficult to determine, except as a residual called conservation value below.

Also, the purchase of a permit by one angler may be perceived as increasing their chance of harvest since the
difference between the bag limit and expected harvest is fish that cannot be legally caught. In this case, the

purchase of the permit may be perceived as an increase in the expected harvest so that it is greater than the bag
limit.

The value of avoiding a non-marginal reduction in the bag limit can be defined by comparing utility functions

2.14 v(p,q(b),y - WIP,) = v(p,q(b),y)

where WTP, is the willingness to pay for a non-marginal change, b is the current bag limit and b is the new

bag limit, E > b . For the non-expert angler, q(b ) < q(b) , and WTP,= 0 unless conservation value is

positive. For expert anglers, (b ) > q(b), and WTP,> 0. However, with zero conservation value and under
the special conditions discussed in the previous section, WTP, can be equal to zero even for expert anglers.

Willingness to Pay under Uncertainty

The definitions of willingness to pay from the previous two sections are most appropriate for anglers who
currently target the species (i.e., participants). For all other anglers (i.e., non-participants) it is inappropriate. An

extension of this model that allows definition of willingness to pay for current non-participants incorporates
demand uncertainty.

Suppose there is uncertainty about species participation (whether a species of fish will be targeted) due to
uncertainty about tastes and preferences. Let 77; be the probability that the species i will be targeted and (1 - 7)
is the probability that species i will not be targeted. The probability of participation is a function of tastes and
preferences and the expected harvest rates, 7T(q(b), d). The effect of expected harvest on participation is
positive. Since the effect of the bag limit on harvest is greater than or equal to zero, the effect of the bag limit on
participation is greater than or.equal to zero. Given data limitations, however, we assume the effect is zero.

'For example the recreational quota for king mackerel is 7.21 million and 6.3 million pounds per year in the
Gulf of Mexico and South Atlantic, respectively.



The expected indirect utility with the current bag limit is

2.15 E[v]=zv(p,q(b),y)+ (- z,)v(p,q(b),y)

The expected indirect utility with the restricted bag limit is

216 E[$]= 70(p,q(), y) + (1= 7, )v(p,q(b), ¥)

The economic value of avoiding the reduction in the current bag limit is

zv(p,q(b),y - OP)+ (1- z)v(p,q(b),y - OP)=
217 7 v(p,q(b), y)+ (1- 7, W(p,q(b), »)

where OP is the option price. The option price is the ex-ante maximum amount of money an angler would be
willing to pay to avoid the reduction in the bag limit given demand uncertainty.

For anglers who are certain they will not participate in the fishery (non-participants) the demand probability is
equal to zero and

218 v(B,q(b),y - OP) = v(B,q(b),»)

For non-participants the option price is equal to zero since q(b ) = q(b) = () unless the angler has
conservation value.

For non-expert target anglers, q(b ) = q(b) and rearranging 2.15 yields

”i(V(Pa q(5),y - OP) - v(p,q(b), y)) =

2.19 (-7, )(v( p.q(6),y)~ v(p,q(8), y - OP ))

If OP > 0, the left hand side of equation 2.17 is negative and the right hand side is positive. Therefore, the
option price must be equal to zero for non-expert anglers except with positive conservation value.

An Ideal Approach

An ideal approach to the estimation of the willingness to pay for reductions in bag limits would incorporate
household production, revealed trip behavior, and contingent valuation models. Household production models
would be used to differentiate between expert and non-expert anglers which could help explain the magnitude of
willingness to pay. Willingness to pay from revealed behavior and contingent valuation models would be
compared for testing the validity of both estimates.

The determination of expert and non-expert anglers could be determined empirically with a household
production model. These data are available with the MRFSS but close inspection of the target and catch data
indicates that few anglers targeted king mackerel, red snapper, or gag on their intercepted trip. Also for those



anglers who did target these species, the harvest and catch and release rates are without sufficient variation for
modeling.

The willingness to pay to avoid a reduction in the bag limit could be estimated with the traditional travel cost
approach and revealed behavior data. The traditional travel cost approach estimates recreation demand functions
with the number of fishing trips (or fishing days) as the dependent variable and travel costs, income, quality, and
other relevant factors as the independent variables. The AMES data includes the number of site and species
specific trips and harvest and catch and release rates per trip (available from the intercepted trip). However,
these data are needed for at least two time periods -- before and after the bag limit reduction -- in order to
estimate the value of bag limit changes with the traditional travel cost model. While the AMES data contains
sufficient information for a limited number of anglers (only those who target the species), this information is not
available for several time periods since the bag limits for these species are constant during 1997.2 Therefore the

CVM is the preferred approach for estimating the willingness to pay for avoiding bag limit reductions with the
AMES data.

The CVM allows estimation of the option price. The extent of demand uncertainty can be assessed through the
estimates of the effect of the probability of species participation on option price. The definitions of willingness
to pay using revealed behavior and contingent valuation data suggests several reasons why option prices for bag
limit reductions might be zero. Option price will be zero for non-expert anglers. For expert anglers, if the target
and secondary species are perfect substitutes or if the catch and release and harvest of the target species are
perfect substitutes, the option price to avoid the bag limit reduction will be zero. Option price will be zero for
anglers who do not target the species.

An empirical specification

Solving equation 2.15 for the option price, OP, yields

2.20 OP = OP(p,q(E),q(l;), ¥, 7| d)

where d is a vector of taste and preference variables. A linear approximation of the option price function is

221 OP = oo+ a,p+ a,q(b) + azQ(l;)"' QY+ 0Ty + Ged +

where the &’s are coefficients and | is a mean zero error term. With the linear approximation the marginal effect
of each of the independent variables is constant. Since very few anglers actually caught king mackerel, red
snapper, or gag on their intercepted trip, measures of expected catch rates will be of poor quality. Absent good
measures of the expected harvest with different bag limits the bag limits themselves will be used to proxy for the

expected harvest measures. With this assumption, b - b > 0 by construction, and the linear approximation of
the option price function is '

-~ OP=a,+ap+ab+ab+a,y+an +ad+p

’Note that MRFSS data contains revealed behavior data suitable for estimation of random utility (site-
selection) models. Estimation of the value of Gulf of Mexico red snapper bag limit changes is feasible because the
bag limits has varied from 4 to 7 during the 1990s.



with expected signs of &, <0, &,> 0, ¢, <0, &, > 0, and &5 > 0. If the current bag limit is constant across all
anglers (e.g., red snapper, gag) then the current bag limit term is included in the constant term. Alternatively, we
construct a bag change variable which yields the more parsimonious option price model

2.23 OP = f5, +—,51P+ﬁz(5‘5)+/’73)’+ﬂ4ﬂ,-+,55d+/l -

where (-b_ - b) is the bag change variable and ,52 > 0. Equation (2.23) is also appropriate if the marginal

effects of changes in the current bag limit and new bag limit are equal, &, = «,. Measures for the variables are
described in next chapter.
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Chapter 3
The AMES Data

In this chapter we present a summary of the AMES data. The willingness to pay data is summarized by
frequencies and by a variety of univariate statistics. We consider reasons for zero willingness to pay values,
reactions to zero bag limits, and outliers. We also summarize the construction of avidity weights, data
imputation for missing values, and the independent variables.

Willingness to Pay Frequency Distribution

The frequency distribution of the king mackerel willingness to pay data reveals a preponderance (74%) of zero
values (n = 9783, Table 3-1). No other value was given by more than 5.9% of the responses. Willingness to pay
responses that accumulated more than 100 values are $2 (2.6%), $5 (5%), $10 (5.9%), $15 (1.8%), $20 (3%),
$25 (2.5%), and $50 (1.4%). Several other values accumulated greater than 10 but less than 100 responses,
including $100 (.5%), but none generated more than 55 responses. Twenty-two responses are greater than $100.

The frequency distribution of the red snapper (n = 4598, Table 3-2) and gag (n = 3344, Table 3-3) willingness to
pay data reveal a similar pattern. Seventy-three percent of the red snapper willingness to pay values are zeto.
Common values are $2 (2%), $5 (2.7%), $10 (6.1%), $20 (3.5%), and $25 (2.1%). Ten values are greater than
$100. Eighty-six percent of the gag willingness to pay values are equal to zero. Other common values are $2
(2.1%), $5 (3%), $10 (2.7%), $20 (1.1%), and $25 (1.2%). There are three values greater than $100.

Zero Willingness to Pay and Protests

Respondents who gave a zero willingness to pay value were asked why they would not be willing to pay
anything (Table 3-4). The most common response for all species being “doesn’t fish for [species].” Fifty-seven

percent of zero willingness to pay respondents do not fish for king mackerel, 53% do not fish for red snapper,
and 80% do not fish for gag.

A large number of respondents “don’t agree with special permit idea” or consider it “unfair.” Fourteen and one-
half percent of king mackerel respondents, 13.5% of red snapper respondents, and 5% of gag respondents
answered in this way. These respondents could be considered as “protest” respondents. A protest respondent is
one who has a positive true willingness to pay value for the permit but chooses not to participate in the
hypothetical scenario and responds with a zero willingness to pay amount. One reason is the rejection of the
contingent valuation scenario itself, in this case disbelief or uncertainty about the permit system.

Another potential protest response is “you don’t want to pay any more to fish than you do now.” This response
suggests that respondents, who may have a positive willingness to pay value, are engaging in strategic behavior
by trying to influence the aggregate willingness to pay value downward so that the special permit policy will not
be enforced. Six percent, 7% and 4% of the king mackerel, red snapper, and gag respondents gave this answer.

Other results from Table 3-4 suggest that the zero willinghess to pay values are true zeros and not protests.

Many anglers practice catch and release for king mackerel (6.2%), red snapper (6.4%) and gag (3%). Other
responses yielded fewer than 3% of the answers.

In Table 3-5 we summarize the response to the question eliciting the behavioral reaction (the RXN variable) of
anglers when faced with a zero bag limit for king mackerel. Over eighty percent of respondents who do not
“generally target” king mackerel would keep fishing if there were a zero bag limit for king mackerel.’ The
dominant reason is that they seldom fish for king mackerel. One-half of respondents who do generally target
king mackerel would keep fishing if there were a zero bag limit. Almost one-half of these practice catch and
release while 20% seldom target king mackerel.

An angler who generally targets the species is one who provided the species as one of their top four
targeted species in the telephone follow-up interview (GENTAR).
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Almost eighty percent of respondents who do not generally target red snapper would keep fishing if there were a
zero bag limit (Table 3-6). The dominant reason is that they seldom fish for the species. Only 38% of
respondents who generally target red snapper would keep fishing if there were a zero bag limit. Thirty-two
percent of red snapper anglers would stop fishing for red snapper and fish for other species.

Over eighty percent of respondents who do not generally target gag would keep fishing if there were a zero bag
limit (Table 3-7) with the dominant reason being that they seldom fish for the species. Sixteen out of twenty-nine
anglers who generally target gag would keep fishing if there were a zero bag limit.

Outliers

An analysis of potential outliers is presented in Table 3-8. An outlier is one who engages in strategic behavior
by overstating willingness to pay in order to influence the aggregate willingness to pay amount. Qutliers are
defined as “unreasonably” large values that will have a significant effect on the mean. OQutliers are flagged as the
willingness to pay values greater than $100. Admittedly, this cutoff is somewhat arbitrary. However, the $100
upper bound is beyond the 99" percentile of the frequency distribution, Also, $100 is the highest willingness to
pay amount for which responses congregate. The potential outliers are presented by willingness to pay amount
along with whether they generally target the species, the size of the bag limit change (BAGCHG), the number of
fishing trips during the 2-month wave (TRIPS), whether they think they would catch the bag limit (SUCEXP,
which is only asked for anglers who generally target the species), their income (INCOME) and their reaction to
the zero bag limit (RXN).

There is little reason to believe that most of the potential outliers are not true outliers. Most of the willingness to
pay values greater than $100 are stated by those who do not generally target the species. In addition, for king
mackerel, more than one-half of those who do not target indicate that they do not fish for king mackerel
(RXN=1). Of the three anglers who generally target king mackerel, one indicates that they would keep fishing
because the bag limit does not matter (RXN=3). The $500 angler who targets king mackerel indicates he would
stop fishing if faced with the bag limit reduction. But, he does not expect to catch the bag limit (SUCEXP=0).

. The angler who is willing to pay $1000 indicates that he would stop fishing if faced with the bag change. But,
this angler faces a potential bag reduction of only one-fish.

Three of the ten red snapper (RS) willingness to pay respondents generally target red snapper. The first is
willing to pay $150, faces a bag change of 4 fish per trip, took 1 five day trip during the 2-month wave, and
expects to catch the current bag limit. The second is willing to pay $250, faces a bag change of 3 fish per trip,
took 4 trips during the 2-month wave, expects to catch the current bag limit and would stop fishing altogether if
the bag limit is reduced. Further inspection reveals that each of the four trips were targeting red snapper and the
angler does not generally target any other species. This angler presents the strongest case that true willingness to
pay is greater than $100. The third red snapper targeting angler is willing to pay $1000, faces a bag change of 2
fish per trip, expects to catch the current bag limit and indicates an “other” reaction to the zero bag limit (the
variable RXN_RS_O is missing). But, the $1000 represents an implausibly high percentage of the angler’s
annual income (more than 3%). Finally, none of the gag (G) potential outliers generally target the species.

Willihgness to Pay Summary Statistics

In Table 3-9 we present a summary of the willingness to pay values by state and wave of the intercept interview

and by the version of the survey. The bag change variable ( 5 ~bin Chapter 2) is constructed as

3.1 Bag Change = STLIMIT - VER_KM
for king mackerel,
3.2 Bag Change =5 - VER_RS

for red snapper and

33 Bag Change =5 - LIMIT
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for gag. The willingness to pay for the king mackerel permit is highest in Georgia, North Carolina and South
Carolina. Willingness to pay for the red snapper permit is highest in Alabama and Mississippi. The mean
differences across state are statistically significant at the p=.01 level according to the nonparametric Kruskal-
Wallis test.

Willingness to pay for the king mackerel permit is over $5 during waves 3 and 4 (1997) and falls below $5
during the other waves. Willingness to pay for the red snapper permit is over $8 during wave 4, almost $6
during wave 2, $5 during wave 3 and below $4 during the other waves. Willingness to pay for the gag permit is
over $4.50 during wave 4, about $1 less during wave 2, and below $3 during the other waves.

Willingness to pay for the king mackerel permit is $4.40 to avoid a 1-fish bag change, $4.96 to avoid a 2-fish
bag change, and $5.91 to avoid a 3-fish bag change (south Atlantic anglers only). These differences are
statistically significant at the .01 level. Willingness to pay for the red snapper permit is $2.65, $5.17, $4.91,
$8.60, and $4.76 for the 1-fish, 2-fish, 3-fish, 4-fish, and 5-fish bag change. These differences are statistically
significant at the .01 level. Willingness to pay for the gag permit is $2.17, $4.32, $2.22, $1.69, and $2.69 for the
1-fish, 2-fish, 3-fish, 4-fish, and 5-fish bag change. These differences are not statistically significant.

We expect willingness to pay to increase with the bag change. For example, willingness to pay for a 2-fish bag
change should be greater than willingness to pay for a 1-fish bag change. The pattern of willingness to pay
estimates does not conform to expectations, especially for red snapper. In this case, willingness to pay for a 5-

fish bag change is less than willingness to pay for the 2-fish and 3-fish bag change. We address this issue further
in Chapter 5.

We do not present higher moments of the willingness to pay distribution due to its non-normal distribution.
Willingness to pay means and standard errors estimated from the Tobit model are presented in later chapters.
See Holiman (2000a, 2000b) for a summary of the red snapper and Gulf king mackerel willingness to pay
estimates by intercepted mode and bag change version. Both of these reports contain estimates of the mean and
standard deviation using a Weibull distribution.

Weighting, Data Imputation, and the Independent Variables

Weights are constructed to correct for avidity bias in the AMES data. Avidity bias will exist if the participants in
the telephone follow-up to the intercept interview are more intense anglers (i.e., fish more days throughout the
year). To test for avidity bias we first compare the number of days fished throughout the year, as measured from
the intercept survey (FFDAYS12), for those who did and did not participate in the telephone survey. The
number of days fished by those who did not participate in the telephone survey is 29.11 (n=46,361). For those

who did participate in the telephone survey the number of days is 36.91 (n=9348). The difference in the days is
statistically significant (t=13.43).

Since FFDAY'S12 contains a number of missing values, we impute data for these missing values so that weights
may be constructed for each respondent who reports a willingness to pay value. The logic of data imputation is

that the efficiency loss from dropping an observation with a valid dependent variable (e.g., willingness to pay)
exceeds the efficiency

loss from including an observation with measurement error in a variable (e.g., measurement error in the weight
based on predicted fishing days).

The predicted value for days fished is based on a regression model with days fished during the past 2 months
- (FFDAYS2) conditioned on the fishing mode and wave of the survey. The model is

34 FFDAYS12=0.98 (2.98) + 4.53*FFDAYS2 (328.14) + 8.00*MODE2 (23.38)
+3.23*MODES3 (9.12) - 0.55*WAVE3 (-1.75)
- 4.15*WAVE4 (-13.02) - 3.52*WAVES (-10.88)

R?= .68, n = 55,656 (t-statistics in parentheses)
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This model finds that anglers annually fish about 4.53 times more days than the number of days fished during
the past two months, private/rental boat (MODE2) and shore (MODE3) anglers fish 8 and 3.23 more days than
charter boat anglers, and anglers intercepted during waves 3, 4, and 5 spend .55, 4.15, and 3.52 fewer days
fishing than those intercepted during waves 1, 2, and 6.

When predicting FFDAYS12 for those with missing values of FFDAYS2 we use the predicted FFDAYS2.
Predicted FFDAYS2 is from a regression model with the lone regressor being the days fished during the past
two months reported from the AMES (TRIPS). The model is

3.5 FFDAYS2 = 2.40 (23.00) + 0.62*TRIPS (67.22)
R?= .33, n= 9234 (t-statistics in parentheses)

This model finds that the number of two month days fished is equal to 2.4 plus 62% of the number of days
fished from the AMES. For those missing the predicted FFDAYS2 variable, due to a missing TRIPS variable,
we use the average predicted value of FFDAYS2 (mean=6.75).

With imputed FFDAYS12 included in the sample, the number of days fished by those who did not participate in
the telephone survey is 29.33 (n=47,559). For those who did participate in the telephone survey the number of
days is 36.68 (n=10,758). The difference in the days is statistically significant (t=14.04). The similarity of these
values to data without imputation indicates that the imputation procedure does not bias the FFDAYS12 variable.
Therefore, we proceed with construction of the weights based on FFDAYS12 with imputed values for those
missing.

In Table 3-10 anglers are grouped into ten days fished categories (0 days fished, 1 days fished, 2 to 3 days
fished, etc.). These categories were determined based on the frequency distribution of days fished. The objective
was to create ten categories in which the differences in the number of anglers in each group was minimized.
After some experimentation, the categories in Table 3-10 achieved this goal.

The weight is equal to the percentage of the respondents in the intercept sample but not in the telephone sample
(AMES=0) divided by the percentage of respondents in the telephone sample (AMES=1). The weights are
greater than one for days fished less than or equal to 13 and less than one for days fished greater than 13. This
indicates that those who fish more days will be treated as a lower percentage of the weighted AMES sample.
When the weights are applied the average number of days fished in the AMES sample is 29.57 (n=10,758)
which is not significantly different from the number of days fished by those who did not participate in the
telephone survey from above.

When the overall sample weight (WT) is used for the king mackerel, red snapper, and gag sub-samples the sum
of the weights does not equal the sample size due to missing observations. The use of weights that do not sum to
equal the sample size may lead to bias in coefficient estimates. Therefore, we create separate weights for the
sub-samples by scaling the weights. The individual sub-sample weights (W T, where S = KM, RS, G) are scaled
by multiplying the unscaled weight (WT) by the sample size (ng) and dividing by the sum of the unscaled
weights for the sample size (}, WT). For example, for king mackerel this formula is

n
3.6 WT,  =WT x <M —
KM WT

Rgpy

where nyy= 9783 and ) yy1=9708.44. The scaling factor is equal to 1.00768. When the scaling factor is
applied, ¥ WTyy, = ngy.

An unweighted and weighted summary of the independent variables and those contained in the demographic
vector (Chapter 2) for the empirical analysis is presented in Table 3-11. The variables include gender (GENDER
= | if male), race (WHITE = 1), fishing experience (YRSFISH and its square: YRSFISHSQ), if the angler owns
a boat (BOATOWN), travel expenses (TRAVEXP) on the intercepted trip, income (INCOME), and if the
angler has ever seen an enforcement officer (ENFORCE=1).
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For all variables except income a small percentage of cases contain missing values. Again, we apply data
imputation techniques to generate a rectangular data set since the efficiency loss from dropping an observation
with a valid dependent variable (e.g., willingness to pay) is expected to exceed the efficiency loss from including
an observation with measurement error in a variable. If the angler’s gender is missing the observation is assigned
the mode (GENDER=1, n=4). Fourteen and 38 anglers are assigned the mode boat ownership (BOATOWN=1)
and enforcement (ENFORCE=1) values. If the number of years fishing or travel expenditures are missing, the
observation is assigned the rounded mean (YRSFISH=21, n=305; TRAVEXP=$43, n=201). More than 40% of
the sample contains missing income values. These were replaced with predictions from a regression model (see
Haab, Whitehead, and McConnell, 2000).

The unweighted and weighted means and standard deviations appear in Table 3-11. Most (88%) of the sample is
male and white (91%). The average fishing experience is 21 years. More than one-half of the sample owns a
boat. The weighted average travel expenditure is $51. Weighted average annual income in $49 thousand. More
than two-thirds of respondents have seen an enforcement officer.

Fishing mode and state of intercept dummy variables are also included. Fifty-six percent of the sample fished
from a private/rental boat on their intercepted trip while 30% fished from the shore. The remaining 14% of the
anglers fished from a charter boat. Sixteen percent of the anglers were intercepted on the Atlantic coast of
Florida while 37% were intercepted on the Gulif coast. Seventeen and 11 percent of the anglers are from North
Carolina and Louisiana. South Carolina and Georgia account for 11% of the anglers while Alabama and
Mississippi account for the remaining 7%.

15



Chapter 4
Econometric Considerations of the Willingness to Pay and
Option Price Models

In this chapter we present econometric option price models. The primary model employed is the Tobit which
allows for censoring at zero willingness to pay. We also consider the Heckman sample selection model and the
double hurdle model.

A Random-Effects Specification

As a point of departure for implementation of the option price model described in Chapter 2, consider a general
specification of the willingness to pay for changes in bag limits. The modeling of the willingness to pay for
changes in bag-limits will depend on the number of questions (species) offered to each individual. Because the
survey design differs by geographic region, the formulation of the econometric models in this chapter will focus
on the generic case of an individual i, facing j different willingness to pay questions. As special cases of this
model, individuals can face any subset of the j questions.

Suppose the willingness to pay for individual i and species j can be written in general form as
4.1 WTPg;ﬂxi:ziile'g')

where Z,; represents a vector of individual specific characteristics that vary across species including the change

in bag-limits, and whether the individual targets that particular species (i.e., assume that the targeting decision is
known with certainty thereby eliminating the complications introduced by the option pricing model) and x i

represent a vector of individual specific characteristics that vary across individuals but are constant across
species (e.g., income, experience). The error term | i contains both individual specific and individual-species

specific components such that
4.2 By =+,

The error terms %, and v, are assumed to be independently distributed normal random variables with mean zero
and respective standard errors 0, and O . In other words, the responses to the three willingness to pay

questions are assumed to be correlated through an individual specific error term that carries across responses.

For a specific individual (i) and species (j), 4 i is distributed normally with mean zero and variance 02 + 02.
v u

For ease in exposition, suppose the system of WTP functions can be written as a linear in parameters function
with additively separable error term such that

4 WIP =B+ Bz, iy

where 8 x5 Tepresents a vector of equation specific parameters conformable with x, and likewise, 5 is a vector
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of equation specific parameters conformable with z; i=1, ... , N; j=1, ..., J. Given the composite structure, the
error terms | i for a given individual (i) are jointly distributed with mean zero and J x J variance-covariance

matrix (£ )equal to
44 Q=0,1,+0,,

where ] 7 Tepresents a J-dimensional identity matrix and WJ is a square J-dimensional matrix of ones. For a
. T . . . . 2 2 2
given individual, the on-diagonal elements of the variance-covariance matrix are: E(l;))=0,,+0,, and the off-

diagonal elements are: E(l4 1 ,)=0,,. If there is no individual specific error term that carries across species

then G_=0 and the variance covariance-matrix simply becomes

a5 Q-cl,

In this case, the error terms can be viewed as independently and identically distributed random variables with no
across equation correlation. If in addition, there are no across equation parameter restrictions (that is, all
parameters are equation specific) then the ] WTP equations can be modeled independently and there is no
statistical gain to modeling the responses to the three WTP questions jointly. If across equation correlation exists
or there are a priori reasons to believe some subset of the parameters do not vary across equations, then joint
estimation of the system of three WTP responses is necessary.

Standard panel data estimation routines readily handle the estimation structure set forth above. Random effects
panel data models can be estimated on the three WTP responses for each individual with or without cross-
equation parameter restriction imposed. Fixed-effects across species groups can be introduced through equation
specific dummy variables. Parameter estimates can be aliowed to vary across equations by introducing
interaction terms between independent variables and the fixed-effect equation specific dummy variables. Tests
of parameter restrictions across equations can be performed by comparing the models estimated with across
equations restrictions to more general specifications that allow for full variation across all equations and all
independent variables. Standard Lagrangian Multiplier (LM) tests or Likelihood Ratio (LR) tests can be used.
Tests for independence of the error terms across equations can be performed by comparing the panel data
estimators to independent estimation on each equation.

The panel data formulation derived here assumes that WTP is fully observable for all equations, and that all
observations are generated by the same underlying data generating process. Also, the above formulation
assumes that the error term and consequently WTP is unbounded and therefore has an infinite support (both
positive and negative). For reasons to be discussed subsequently, this may not be the case for the current
application. As such, it is necessary to consider aiternatives to the general formulation presented above for the
analysis of the WTP responses to changes in bag-limits.

Modeling Zero and Non-negative Willingness to Pay

Two immediate concerns arise with the previous derivation of a model for WTP: 1) WTP for the prevention of a
reduction in bag-limits can not be negative. The good being valued is the status quo. It is inconceivable that a
respondent would have a negative WTP to maintain the status quo relative to a more restrictive situation (tighter
bag-limits), and 2) The open-ended format for the valuation questions leads to a large number of respondents
reporting zero WTP. As will be discussed below, these zero WTP responses often have plausible justifications,
but the continuous dependent variable model proposed in the previous section is unlikely to predict the large
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number of zero WTP’s observed in the sample. For these reasons (and others to be discussed), it is necessary to
consider models that go beyond the simple continuous dependant variable panel model proposed in the previous
section.

What can lead to zero WTP?

Zero WTP is a problem that has confounded researchers in contingent valuation for a number of years. Plausible
explanations for the large number of zero responses observed in open-ended CV studies exist, but successfully
modeling the underlying behavior processes has proven elusive. In the present case, zero WTP responses can
occur for a number of reasons. The following list is meant to illustrate some of the possible justifications for
zero WTP to prevent the reduction in bag-limits, but this list is by no means exhaustive. Most of the reasons
defined here are discussed more formally in Chapter 2.

Non-expert Anglers: As defined here, a non-expert angler is an angler that does not typically catch the reduced
bag-limit of a particular species. Holding everything else constant, such an angler is expected to respond that
WTP to prevent the reduction in bag-limit is zero because the reduced bag-limit is not a binding constraint and
the angler is no worse off than under the status quo bag-limit.

Perfect Substitution Between Species: If an angler can perfectly substitute between species and the angler is not
an expert for all species then a reduction in the bag-limit for one species will not decrease the utility of the
angler. WTP to prevent the reduction will be zero.

Perfect Substitution between ‘Catch and Release’ and Harvest: Similarly if there is perfect substitutability
between ‘catch and release’ and harvesting, then the reduced bag-limit will have no negative utility effects on
the angler. :

Non-participation with No Conservation Motives: If the angler does not participate in the fishery for which the
bag-limit is proposed, there will be no reduction in utility due to the bag-limit and WTP will be zero. Note that
we must assume no conservation motives on the part of the non-participant angler to ensure zero WTP.

A Single Equation Framework

To begin the discussion of models that allow for zero WTP, first assume that there is no error correlation
between the WTP decision for different species, and that the structural form of WTP is independent across
species. As noted above, these are the two conditions required for independent estimation of the WTP equations
for each species. These conditions will be relaxed in later sections. With these assumptions, this section will
focus on the estimation of a single species WTP function with zeros.

The Tobit Model: The simplest method for accounting for a large number of zero observations for a continuous
dependent variable, and no negative observations is to suppose that WTP is censored from below at zero. That
is, suppose true willingness to pay (WTP*) for a given species and individual i can be written as

WIP; =B x+Bz+v,

However, to the researcher, WTP* is unobservable over its full range. Instead, if WTP* is less than or equal to
zero, observed WTP is zero, otherwise, observed WTP=WTP*. That is, true WTP is only observed if it is
greater than or equal to zero. Otherwise, the observed value for WTP is zero. This does not necessarily mean
that true WTP for these censored observations is equal to zero, but the true WTP is unobservable over the non-
positive range and instead only a zero is observed. Note that assuming an unbounded latent WTP conflicts with
the assumption that anglers can not be made worse off by provision of the status quo. Despite this shortcoming,

the censored dependent variable model provides a valuable starting point for the discussion of more realistic
models.

4.6

The censored dependent variable model is often referred to as the Tobit model. The Tobit model assumes a
one-stage decision rule such that all observations are generated by the same underlying data generating process.
The probability of observing a zero observation is equal to the probability that WTP* is less than or equal to
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zero. Assuming that the error term (v) is normally distributed with mean zero and constant variance ( 0 ), this
probability becomes

. P(WTP *s0)=<1>(-3"%p’z>

where @ () is the standard normal cumulative distribution function. The probability of observing a positive
WTP is simply the probability of observing WTP*

WIP* - x+
4 POVIP+)=Lp( bz,

Defining an indicator variable I ,=11if the respondent has a positive WTP and I =0 if the respondent has a
zero WTP, the Tobit likelihood function can be written as

49 L®=11%: povTP=0)'"P(WTPA)>

As stated previously, the Tobit model assumes that the zero WTP responses are driven by the same data
generating process as the positive WTP responses. In fact, underlying the Tobit model is the assumption that
WTP can actually be negative; but, as researchers we can not observe the negative range of true WTP. In
addition, the Tobit model assumes the same structural model generates the zero observations and the positive
WTP values. The multiple possible explanations for zero WTP discussed in the previous section lend evidence
that a more general econometric model may be warranted.

The Heckman Two-Stage Model: To alleviate the restrictive assumptions of the Tobit single-stage model,
suppose decisions are instead made in two-stages: First whether to pay anything, and then conditional on being
WTP something, how much to pay. The first stage of this model can be thought to explain the zero WTP values
versus the positive WTP values, but not the magnitude of the positive WTP values. Conditional on clearing the
zero-WTP hurdle, we can then view the observed positive WTP values as a truncated-at-zero sample. A
positive WTP observation is a function of a set of exogenous variables (x 1) but is also conditioned on the

factors that determine the zero WTP observations ( xz)' To remain consistent with previous sections, we
define X, as the composite matrix: x 1= (x2)- It is important to note that X, and X, can contain none, some, or

all of the same variables. In this Heckman two-stage formulation, the factors that determine zero observations
can differ from those determining the positive observations. The stochastic link between the two decisions is an

individual specific error that carries across the two stages (u). In addition, there are stage specific errors (v,

and v, ) that are specific to either the zero WTP decision or the positive WTP decision but are uncorrelated.

More formally, the decision of whether reported WTP (WTP R) will be greater than zero is based on an
unobservable continuous dependent variable (y*) such that WTP £=0 if y*<0 and WTP >0 if y*>0.
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Define y* as a linear in parameters function of X, the individual specific error (u) and the first-stage specific

error (vl) such that

4.10 y*=[3xlx1+u+v1

The probability that reported WTP will be greater than zero is consequently equal to the probability that y*>0.

Assuming u and v, are normally distributed with respective variances: ;2 and o2 the probability of a zero
u

o) v,

reported WTP can be written

B.x
411 O(WTP R=0)=P(y " < 0)=B (- ——
0,t0

Y

If the zero-WTP hurdle is cleared then reported WTP is equal to true WTP (WTP*). True WTP is a linear
function of Xy the individual specific error (u), and the second-stage specific error ( v,)

4.12 WTP*=Bx2x2+u+v2

Observation of WTP* is conditional on clearing the zero WTP hurdle. The expected value of WTP*
conditional on y*>0 can now be written

4.13 E(WTP*ly*>0)=B, x,+ E(u+vyju+v>-B, x,)

The conditional error expectation on the RHS of the above equation can be shown to be (Greene, 2000, 926-
931)

E(u+vy|u+v,>- Bx,x1)=(°u)(°u+°v2)

X
4.14 O (——)

Consistent estimates of ﬁx /(0u+0v ) can be found from a first-stage probit model explaining zero versus non-
1 1

zero WTP. These first stage probit estimates can be used to calculate the inverse Mill’s ratio

20



B x 0, +0
%71 u Y
4.15 : MG +’0 )= 5 1
u v (I)( xxxl )
0,*0,

A second-stage ordinary least squares model which includes Xy and A() can then be used to correct the

truncated positive WTP responses for sample selection bias. "The parameter estimate on the inverse Mill’s ratio
B 5 Provides a consistent estimate of (o u)(ou+ o, )- Note that individual estimates of the three error variances
2

are not identifiable in the Heckman specification.

The Heckman two-stage model offers a more general treatment of WTP responses than the Tobit model because
it allows for different sets of explanatory variables to affect the zero observations versus the positive
observations. However, the Heckman model is still restrictive because it assumes that all zero observations are
generated by the same structural form of the model. Problems occur if the two-stage behavioral process
underlying the WTP decision allows for zero WTP responses in the second stage (the Heckman model does not
allow for this possibility). The Heckman model assumes the two-stages are zero/non-zero and then conditional
on non-zero how much greater than zero?

Double-Hurdle Models:

Suppose instead, respondents first make the decision of market participation versus non-particpation and then
conditional on participation how much to pay (which could potentially include zero). For example, if an angler
is a non-conservationist non-expert for a particular species, they will have zero WTP for preventing reductions
in bag-limits for that species. However, an expert angler for that species does not necesarily have positive WTP.
It is conceivable that participants in the market for a species can still have zero WTP for the prevention of

reductions in bag-limits. The Heckman model does not allow for the possibility of zero WTP in the second
stage. ’

The aforementioned drawback to the Heckman model for the current application opens the possibility for a
three-stage decision process: Market-participation versus non-participation, zero WTP versus positive WTP,
and how much to pay? The three-stage decision can be modeled as a combination of the Tobit and Heckman,
The resulting model is referred to as a double-hurdle model. The basic formulation is as follows: true WTP
(WTP*) is a Tobit model as modeled previously. However, true WTP is only observed if the respondent is a
market participant. So, conditional on the decision to participate in the market, the respondent then faces a
second hurdle of zero versus non-zero WTP. This decision is modeled in a Tobit framework. This procedure
can be generalized to a three-stage Heckman procedure in which the three decisions are determined by different
structural models but an individual specific error carries across the three decisions.

The three sets of models described in this section apply to single equation situations only. In the current case,
each survey participant is offered multiple CV questions. At the very least it is expected that individual specific
unobservable preferences will carry across the multiple questions. To address the multiple questions in a single
equation setting it must be the case that question responses are independent across questions. If independence is
violated, multiple equation solutions must be pursued. However, simultaneous modeling of multiple decisions
drastically increases the computation and estimation complexity.
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A Discussion of Multiple-Equation Models

Random Effects Tobit: The simplest version of a multiple-equation model that accounts for a mass of zero WTP
responses is the random effects Tobit. Recali the random effects panel formulation of the multiple CV questions

e WIP, =B+Bo7y b,

Suppose we introduce two complications to this standard random effects model: 1) WTP,-; is unobserved.

Reported WTP ( WTP;.Q ) is the maximum of zero and WTP; . This is the Tobit formulation. 2) By =+,

That is, the error term is the sum of an individual-specific component and an individual-equation-specific
component. By assuming normal distributions for the error components, the joint censored distribution of
observed WTP can be derived. Parameter estimates can be obtained using standard maximum likelihood
procedures. Statistical analysis in the random effects Tobit is difficult as the standard errors on parameter
estimates must be corrected for the across equation correlation in the error terms. The random effects Tobit
suffers from problems similar to those of the single-equation Tobit in explaining zero observations. The model
assumes that the same data generating process underlies both the zero and positive observations. While
recognizing the problem in a multiple-equation framework is straightforward, multiple equation single and
double-hurdle models have proven difficult to derive and estimate in the literature.
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Chapter S
Tobit, Heckman and Double Hurdle Model Results

In this chapter we develop empirical option price models maintaining the assumption of independence across
equations. We present Tobit, Heckman, and double hurdie models of option price (i.e., willingness to pay under
uncertainty) for avoidance of reductions in king mackerel, red snapper, and gag bag limits. Finally, we estimate
the marginal effects and 95% confidence intervals for the value of avoiding a one-fish reduction in the bag limit.

The samples used are the south Atlantic and Guif states for king mackerel, the Guif states for red snapper, and
Florida for gag.

Empirical Results

We implement the willingness to pay empirical models using SAS software. The Tobit model employs PROC
LIFEREG with the normal distribution. The Heckman model is implemented with a probit model (PROC
PROBIT) to estimate the probability of a positive willingness to pay followed by an ordinary least squares
regression (PROC REG) on the positive willingness to pay values with the inverse Mill’s ratio as a regressor.
Both the Tobit and Heckman models also include the predicted probability of participation (i.e., probability of
targeting the species) as a regressor and are, therefore, explicitly both option price models. The double hurdle
model employs a combination of the probit participation model and a Tobit model on the participants.
Conceptually, the second stage Tobit is a willingness to pay model after the uncertainty about participation has
been resolved (as specified by the participation model). All models are estimated with two sets of data. The first
is the full data including all willingness to pay values. The trimmed data excludes protest and outlier willingness
to pay values.

Participation Models

Of the cases with non-missing willingness to pay values, 6.9%, 4.4%, and 1.1% of the AMES anglers generally
target (GENTAR) king mackerel, red snapper, and gag, respectively. The empirical models estimating the
factors that influence species participation are presented in Table 5-1. We attempted numerous specifications of
these models in an attempt to identify the most influential determinants of participation. Other variables were
included but were found to be statistically insignificant predictors of participation.

The king mackerel model contains a number of variables that influence participation. Men, whites, and boat
owners are more likely to target king mackerel. King mackerel participation is increasing with fishing
experience (at a decreasing rate) and income. Private/rental boat and shore anglers are less likely to target king
mackerel, relative to charter boat anglers. Anglers in the Carolinas and Alabama are more likely while anglers in
Georgia and Louisiana are less likely to target king mackerel, relative to those on the Gulf coast of Florida.

Few variables predict participation in the red snapper and gag fisheries. Boat owners and private/rental boat and
shore anglers are less likely to target red snapper. Anglers who spent more money for travel on their intercepted
trip are less likely to target red snapper. Alabama, Mississippi, and Louisiana anglers are more likely to target
red snapper. The only variables which predict gag fishing is experience (at a diminishing rate) and the dummy
variable for the east coast of Florida.

The predicted probability of participation (PROB) is used as an independent variable in the option price
empirical models. The average probability of participation is 6.7%, 4.6%, and 1% for king mackerel, red

snapper, and gag. The minimum probability of participation is 0% (after rounding) for each species. The
maximum probability of participation is 35%, 41%, and 14% for king mackerel, red snapper, and gag.
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Zero Bag Limit Effect

In preliminary Tobit models of willingness to pay we found that the willingness to pay amounts vary in the
expected direction with the bag limit version of the permit, as expected. However, when the zero fish bag limit
version is controlled for separately (e.g., ZERO = 1 if ver_km = 0, 0 otherwise) the magnitude of the bag change
coefficient increases substantially and the zero bag dummy variable coefficient is negative and of similar
magnitude to the bag change coefficient. This result suggests that the willingness to pay for the permit is equal to
zero when the bag limit is zero.

Further investigation of these responses indicates there is no relationship between the protest zero responses and
those who received the zero bag limit version. Therefore, this “zero willingness to pay to avoid a zero bag limit”
effect is due to something other than protest responses. One explanation of this result is that anglers prefer not to
harvest the species if it is so stressed that a zero bag limit is recommended. This suggests a conservation ethic
among AMES anglers. If a species is stressed, anglers will choose a substitute species to target until the stock of
the stressed species has improved to a healthy size.

In the models that follow we include the ZERO version dummy variable. In the king mackerel and red snapper
models the coefficient is usually negative and statistically significant. The coefficient is typically not
significantly different from zero in the gag models.

King Mackerel

The king mackerel Tobit option price models are presented in Table 5-2. With the full data the willingness to
pay for the king mackerel permit is increasing in the size of the proposed change in the bag limit (BAGCHG).
For example, if the reduction in the bag is one fish willingness to pay to avoid this bag reduction is lower than if
the reduction in the bag is two or more fish. The magnitude of the BAGCHG coefficient, 8.87, is related to the
marginal value of the bag change. The marginal value of the bag change is equal to the regression coefficient
multiplied by the probability that the respondent will state a positive willingness to pay value. Therefore, the
Tobit coefficient is always greater than the marginal value of the bag change.

Other results from the king mackerel model are that willingness to pay increases with the probability that the
angler will target the species and income. Both results are as predicted and lend credibility to the willingness to
pay data. Boat owners are less likely to be willing to pay.

The trimmed data Tobit model obtains different results from the full data model. The bag change coefficient is
again positive and statistically different from zero. However, its magnitude is less than 50% of its full data
counterpart. This indicates that after trimming protests and outliers, the willingness to pay to avoid the bag
change is lower. The only other statistically significant coefficient is for the probability of targeting the species.

The Heckman results are presented in Table 5-3. The probit model for positive willingness to pay finds that boat
owners are less likely to give a positive willingness to pay in the full sample. In both full and trimmed samples,
the probability of a positive willingness to pay value is higher with higher income. Results from the second-stage
models indicates that willingness to pay increases as the proposed bag change increases. Similarly to the Tobit
model, the magnitude of the bag change coefficient is higher with the full data. In the full data model, the
inverse mills ratio is negative and statistically significant indicating that sample selection bias will result if the
zero willingness to pay values are excluded from the regression model. The participation probability is a
determinant of willingness to pay only in the trimmed data. In both models, only 1% of the variation in

willingness to pay is explained by the independent variables. These results suggests that little confidence should
be placed in the Heckman model.

In general, the double hurdle model results are similar to the Tobit and Heckman models (Table 5-4).
Willingness to pay increases with the bag change and income. However, the magnitude of the bag change
coefficient is much larger when compared to the Tobit model coefficients in Table 5-2. This indicates that the

sub-sample of anglers who target king mackerel are willing to pay more to avoid a reduction in the bag limit,
relative to the full sample.
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Red Snapper and Gag

The red snapper Tobit models follow a similar pattern as the king mackerel models (Table 5-5). The coefficient
on the bag change variable is positive and statistically significant and is larger in magnitude with the full data
relative to the trimmed data. The probability of targeting red snapper is not a statistically significant determinant
of willingness to pay using the full data. However, the coefficient on this variable is statistically significant when
using the trimmed data. In both models willingness to pay is increasing in income and iower for boat owners.

The results from the Heckman models for the red snapper data are not impressive (Table 5-6). The determinants
of a positive willingness to pay value are the boat ownership and income variables. In the second stage
regression model, the bag change variable is positive and statistically significant (again, the magnitude of the
coefficient is higher in the full data). In the trimmed data model willingness to pay increases with the probability
that red snapper will be targeted and if the angler had ever seen an enforcement officer. The F-value from the
full data model indicate that the overall regression model is not statistically significant. The R-squared values

from the trimmed data model indicates that only 2% of the variation in willingness to pay is explained by the
independent variables.

The red snapper double hurdle model also does not perform particularly well (Table 5-7). With the full data, the
bag change coefTicient is not statistically different from zero. The only variables which do have statistically
significant coefficients are travel expenditures and income. With the trimmed data, the coefficient on the bag

change variable is only marginally statistically significant. Also, the travel expenditures and boat ownership
coefficients are statistically significant.

Each of the gag regression models are plagued by coefficients on the bag change variables that are of the
opposite sign from what is expected. In the Tobit model, income has a negative effect on willingness to pay
(Table 5-8). In the Heckman models, the probability of a positive willingness to pay value decreases with
income and increases for Florida Gulf coast anglers (Table 5-9). None of the determinants of a positive
willingness to pay value have statistically significant coefficients. Given that very few anglers target gag, the
double hurdle models also have no statistically significant determinants of willingness to pay (Table 5-10).

State Effects

We next incorporate variables which capture potential geographic differences in the value of avoiding the bag
limits. Each state dummy variable is interacted with the bag change coefficient and included in the king
mackerel and red snapper Tobit models. In the king mackerel full data model, all of the coefficients on the
interaction variables are statistically significant except for the Louisiana interaction (Table 5-11). With the
trimmed data, the Alabama and Louisiana interaction coefficients are not statistically significant. All of the other
results are similar to the more parsimonious Tobit models (Table 5-2) except the coefficient on the enforcement
variable becomes marginally significant with the full data. A comparison of the log-likelihood function values of

the parsimonious models and the models with interaction terms indicates that the models with the interaction
terms are improvements.

The red snapper models with interaction terms show similar improvement (Table 5-12). In the full data model
the Alabama interaction coefficient is not statistically different from zero. In the trimmed data model the
Alabama interaction term is marginally significant. Again, all other results are similar when compared to the
more parsimonious models (Table 5-5) except that the coefficient on the enforcement variable becomes
marginally significant in the trimmed data model.

Option Price Estimates

The marginal effect of the bag change on the willingness to pay is the value of avoiding a one fish reduction in
the bag limit. The marginal effects of the bag change from the Tobit and the double hurdle models are calculated
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as the coefficient on the bag change variable scaled by the mean of the standard normal cumulative distribution
function (Greene, 1997; p. 963)

g

5.1 T T o=

azfjé%?c; B ﬂ‘q)(ﬂ'X)

where ﬂl is the Tobit coefficient on the BAGCHG variable. The marginal effects from the Heckman model is

simply the ordinary least squares regression coefficient. For each of the models the 95% confidence intervals are
constructed from the standard errors of the regression coefficient. The standard errors from the Tobit and double
hurdle models are also scaled by the mean of the standard normal cumulative distribution function.

The mean option price and 95% confidence interval estimates from the Tobit, Heckman, and double hurdle
models from Tables 5-2 to 5-10 are presented in Table 5-13. Several patterns emerge. First, the king mackerel
option prices are greater than the red snapper and gag estimates. Second, all but one of the double hurdle model
option price estimates are not statistically different from zero since the 95% confidence intervals overlap with
zero. Third, the option price estimates from the full data are larger than those from the trimmed data models.
Fourth, the gag option price estimates are all negative, reflecting the wrong signed coefficient on the gag change
variable.

The estimates of the willingness to pay to avoid a one fish bag limit decrease estimates from the Tobit models of
Table 5-11 and 5-12 vary across state and species (Table 5-14). However, none of the differences in option price

are statistically significant at p=.05. The option price is not significantly different from zero for anglers who
were intercepted in Alabama (trimmed data only) and Louisiana for king mackerel. The king mackerel option
price estimates are 18% to 144% greater than when the value is constrained to be equal across states as in Table
5-13. The full data king mackerel option price is (with rounding) $2, $5, $4, $4, $4, $3, and $3 in Alabama,
Florida (East Coast), Florida (West Coast), Georgia, Mississippi, North and South Carolina. The trimmed data
king mackerel option price is $2, $2, $1, $1, $1 and $1 in Florida (East Coast), Florida (West Coast), Georgia,
Mississippi, North and South Carolina.

The red snapper estimates are only slightly different from the constrained estimates (Table 5-13). The full data
red snapper option price is $2, $1 and $2 for Florida (West Coast), Louisiana and Mississippi. The trimmed data
red snapper option price is less than $1 in Florida (West Coast), Louisiana and Mississippi. None of the
differences in option price are statistically significant at p=.05. The option price is not significantly different
from zero for anglers who were intercepted in Alabama.
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Chapter 6
Bivariate Tobit Model Results

To demonstrate the potential models that can be estimated on the AMES contingent valuation data, two
additional sets of models were estimated: (a) joint willingness to pay models and (b) joint
participation/willingness to pay models. The additional complications added by these models require specific
programming of tailored likelihood functions. The models estimated were programmed in Gauss.

Joint Willingness to Pay Models

Chapter 3 discusses the Random Effects Tobit model. As a generalization of that model, we estimate a bivariate
Tobit model on the king mackerel and red snapper WTP responses. Due to missing values and that the red

snapper WTP question only applied in Gulf States, the joint sample size is 4,447 responses. The bivariate Tobit
model is specified as

WIP” = XiaB st €
WIP,,,=Max(0,WTP " 6.1

WIP" pg=XpBrsteps
WIP o= Max(0,WTP* )
€x1pErs~ N(0,0,0 1,0 posP)

where WTP,,, and WTP, represent observed willingness to pay. The correlation coefficient represents the
across response correlation between the two willingness to pay questions. Nested within the bivariate Tobit
model is the random effects Tobit in which the species specific parameter vectors and error variances are
restricted to be equal, but the covariance (and consequently the correlation coefficient) is non-zero. Tables 6-1
and 6-2 presents the parameter estimates and standard errors of the bivariate Tobit and random effects Tobit

models. The specifications for the bivariate Tobits are identical to those in Tables 5-12 and 5-13 with the
following exceptions:

1. Because the joint sample focuses on Gulf states, only Gulf state bag limit change interactions are
possible.
2. The zero bag limit variable is eliminated from the king mackerel equation. Because only one version

of the bag limit change was offered in the Gulf states for king mackerel, the zero bag limit variable is
collinear with the bag-limit change variables.

3. The bivariate Tobit routine in LIMDEP proved unreliable in this application. The bivariate Tobit
likelihood function was programmed instead in GAUSS. Olsen’s reparameterization of the Tobit
likelihood function was implemented in which each parameter is normalized by the standard error of
the appropriate error term. In addition, the standard errors were reparameterized such that n =In( 1 ).

g

4. Only full-data models are estimated.

Likelihood ratio tests overwhelmingly rejected the hypothesis of no correlation between WTP responses. The
likelihood ratio test is performed by comparing twice the difference in the log-likelihood function value between
independent Tobits and the bivariate Tobit. Restricting the correlation coefficent to be zero in the bivariate
Tobit is equivalent to running independent Tobits on the two WTP responses. The likelihood ratio test statistic
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is distributed chi-squared with 1 degree of freedom. For the present case, the likelihood-ratio test statistic for
zero correlation is 662.14. The 95% critical value for the test is 3.84.

As noted above, nested within the bivariate Tobit is the random effects Tobit model. Table 6-2 reports two
specifications of the random effects model. In Random Effects Tobit 1 we (a) restrict the error variance to be
equal across WTP questions but allow for correlation between responses and (b) allow for species specific
effects for variables that differ across WTP questions (state specific bag-limits, participation probabilities, and
zero bag-limits).

Random Effects Tobit 2 still restricts the error variance to be equal across WTP questions but allows for species
specific coefficients for all explanatory variables. A likelihood ratio test fails to find a significant difference
between Random Effects Tobit 1 and Random Effects Tobit 2 implying that variables that do not vary across
WTP questions have similar effects on WTP in a random effects framework. However, comparing the Random
Effects Tobit 2 to the more general bivariate Tobit, the restriction of equal variance across WTP questions is
rejected (likelihood ratio test statistic=81.82, 95% critical value with 1 restriction = 3.84). We therefore choose
the general bivariate Tobit as our preferred specification and the remainder of this discussion will focus on the
bivariate Tobit specification of the WTP responses.

Survey design and implementation problems lead to difficulty in measuring the option price for changes in bag
limits for king mackerel with the bivariate Tobit model. As noted above, only one version of the king mackerel
bag-limit change question was asked in the Gulf states. This leads to collinearity between the bag-limit change
variables and the zero-bag limit dummy variable. As such, the zero-bag limit dummy variable can not be
included in the king mackerel analysis. It is expected that the zero bag-limit variable will have a negative effect
on option price. Because the zero-bag limit variable and the bag-limit change variables are correlated, it is .
expected that the bag-limit change variable will pick up the effect of the omission of the zero-bag limit variable.
This effect manifests itself in small and negative coefficients on the state-specific king mackerel bag-change
variables. As noted in previous sections, the option price for the Tobit model is the bag-change coefficient
scaled by the probability of a non-zero response. If the coefficient on bag-change is negative then the option
price will also be negative. Table 6-3 gives the average king mackerel and red snapper option prices from the
bivariate Tobit models.

The king mackerel option prices for the bivariate Tobit are substantially smaller than those for the independent
Tobit models (Tables 5-11 and 5-12). The Alabama and Louisiana estimates are negative as dictated by the
negative bag-change coefficients. The red snapper estimates are of the same magnitude as the independent
Tobit. Given the necessary restriction in sample size to estimate the bivariate Tobit, and the collinearity
problem caused by the zero-bag limit dummy variable, we recommend against using the bivariate Tobit results
for policy analysis in this case.

Joint WTP/Participation Models

The joint participation/willingness to pay models estimate the species participation model and Tobit willingness
to pay model simultaneously. The probability of participation for king mackerel and red snapper are modeled as
in Table 5-1. The Tobit specification for each species is the same as in Tables 5-11 and 5-12. For the joint
model, the probability of participation from the participation model directly enters the Tobit WTP function and
is simultaneously estimated with the parameters of the Tobit model. In addition, the unobservable error terms
from the participation and willingness to pay models are assumed to be correlated. Formally, the joint
part1c1pat10n/w1lhngness to pay model is

Participation=X,B ,+¢,
WTP ™ =X, .+ P(Participation)p p,+€
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where Participation represents a continuous unobservable participation variable measured by GENTAR. The
participation variable is only observable as an index function for values of Participation greater than or equal to
zero. Assuming the participation error, g P’ is normally distributed with mean zero and unknown standard

deviation, g P’ the probability of observing participation greater than or equal to zero is
P(Participation> 0)=® (X, ,)

where the parameter vector is now understood to be normalized by the unknown standard deviation.

An additional complication arises because WTP is not fully observable. WTP* represents the underlying
unobservable WTP function, but WTP is only observable if WTP*>0. Otherwise, WTP=0. Finally, the decision
to participate and the WTP decision are generated by correlated unobservable decision processes. In other
words, the errors for the two decisions are assumed to be correlated. This correlation is introduced by assuming
that the two errors are generated by a bivariate normal distribution. Each error has a marginal normal
distribution with mean zero and unknown (and possibly unequal) variance. Correlation is introduced through a
correlation coefficient that will be estimated jointly with the other parameters. The full participation/willingness
to pay model is

WIP = X, [, + ©(X,f:)+ &, ; if WIP*>0
WTP = 0 ;, otherwise

P =1; if Participation > 0

P = 0 ; otherwise

Epséy ~ N(O,O,O’P,O'W,p)

Four possible observational combinations between participation and WTP exist. There are summarized as: (a)
participation and WTP>0, (b) participation and WTP=0, (¢) nonparticipation and WTP>0, and (d)
nonparticipation and WTP=0. The probability of each occurrence yields the contribution to the likelihood
function for each observation.

Tables 6-4 and 6-5 present the parameter estimates for the joint participation/willingness to pay models on the
full king mackerel and red snapper samples. Also reported are the estimates of the independent participation and
willingness to pay models (with correlation between errors restricted to be zero). The parameter estimates
should be interpreted as the normalized parameter estimates. The first finding is that the decision of WTP and
participation for the king mackerel sample are correlated. The significant correlation coefficient for the king
mackerel sample indicates that modeling the decisions jointly should enhance the statistical efficiency of the
parameter estimates.

The same can not be said for the red snapper sample. The correlation coefficient can not be distinguished from
zero at a reasonable confidence level. Given this lack of correlation, it is not surprising that independent Tobit
and probit models perform similar to the joint model. The remainder focuses on the king mackerel sample.

Table 6-6 reports the option prices to avoid a one fish bag decrease for the king mackerel sample. The values are
reported for the independent probit/Tobit specification of the model, and the joint probit/Tobit model. The
endogeneity of the probability of participation leads to biased estimates of the option prices for the independent
models. The joint model accounts for this endogeneity by jointly allowing for correlation between the decisions.
As Table 6-6 shows, accounting for this endogenity leads to different point estimates for the option price than
does the independent specification.

It should be noted that the option prices for the independent probit/Tobit model differ slightly from those in

29



Table 5-14 because of possible differences in algorithms and convergence criteria across estimation packages.
Further, although the errors are assumed independent, the joint estimation of the parameters within the same
maximization routine may cause slight differences. While standard errors are not directly calculated for the
option prices in Table 6-6 (the joint estimation routine results in standard errors for functions of parameters that
are not directly comparable with other methods used in this report), it is worth noting that the point estimates for
the option prices for the joint model all fall within the 95% confidence intervals defined for the independent
Tobit estimates in Table 5-14.
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Chapter 7
Conclusions

The purpose of this report is to estimate the value of avoiding reductions in bag limits for king mackerel, red
snapper and gag in the southeastern United States using the AMES data. The AMES contains a series of CVM
questions that directly elicit the willingness to pay for reductions in bag limits for red snapper, king mackeérel
and gag. We presented theoretical and econometric models of willingness to pay.

We theoretically defined the option price as the willingness to pay under demand uncertainty where the
uncertainty arises from the species targeting decision. Several theoretical reasons for zero willingness to pay are
described. The primary econometric model employed is the Tobit which allows for censoring at zero willingness
to pay. We also consider the Heckman sample selection model and the double hurdle model. We find that the
Tobit model is statistically superior to the other models.

Several results emerge from our empirical analysis. First, we find that the king mackerel and red snapper
willingness to pay values are valid measures of economic value. Willingness to pay increases with the magnitude
of the bag change. This result confirms the theoretical prediction that “more is better.” The marginal effect of
the bag change coefficient is the value of avoiding a one-fish reduction in the bag limit. Willingness to pay also
increases with the probability that the respondent would target the species. In addition to confirming that the
option price specification is appropriate, this result conforms to economic theory. The gag willingness to pay
values are not valid measures of economic value. In particular, willingness to pay decreases with increases in the
bag change.

Second, we found a “zero bag” effect. In the king mackerel and red snapper models, willingness to pay increases
with the size of the bag change until the maximum bag change. Respondents who are given a scenario in which
the future legal bag limit is zero fish and are then told that they can purchase a permit to legally catch the current
number of legal fish (e.g., three or two for king mackerel, five for red snapper) are willing to pay zero dollars.
We speculate that these zero willingness to pay values are protest bids. In other words, respondents do not
believe the scenario and respond accordingly.

We extended the basic Tobit estimates with two additional sets of models. First, we estimated the bivariate Tobit
willingness to pay models for king mackerel and red snapper. The bivariate Tobit is an improvement over the
independent Tobit models. The king mackerel option prices for the bivariate Tobit are substantially smaller than
those for the independent Tobit models. The red snapper estimates are of the same magnitude as the independent
Tobit. We recommend against using the bivariate Tobit results for policy analysis since only the Gulf of Mexico
anglers are included.

Next, we estimate the bivariate probit and Tobit models in which the participation and willingness to pay
decisions are estimated jointly. We find that the participation and willingness to pay decisions are correlated for
the king mackerel sample. We find some differences in option price estimates between the independent and joint
models. But the point estimates from the joint model fall within the 95% confidence intervals for the
independent models. For red snapper, the correlation coefficient is not different from zero.

The willingness to pay estimates in this report could be used for policy analysis. The annual value of avoiding a
one-fish reduction in the king mackerel bag limit ranges from $1.54 to $4.79 across state. The value of avoiding
a one-fish reduction in the red snapper bag limit ranges from $.44 to $1.90 across state. These estimates could
be aggregated across the number of anglers in each state to estimate the aggregate value of avoiding a one-fish

reduction in the bag limit. These aggregate estimates could then be compared to the value of reduced bag limits
to determine the efficiency of bag limits.
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For example, aggregating the Florida (East Coast) value ($4.79) by 1.11 million Florida Atlantic coastal resident
anglers in 1997 (personal communication, Stephen Holiman, 2001) yields an aggregate value of $5.32 million.
This indicates that all Florida Atlantic coastal resident anglers would be willing to pay $5.32 million to avoid
the one-fish reduction in the king mackerel bag limit. Aggregating the Florida (West Coast) value of avoiding a
one-fish reduction in the red snapper bag limit ($1.90) by 1.25 million Florida Gulf coastal resident anglers in

1997 yields an aggregate value of $2.38 million.
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Table 3-1. Willingness to Pay for King

Mackerel Permit
WTP_KM

KR o0 AN N WD BB WLWWERNNDNDNDN = e e e e e e
B AN RS S E R O RO SN PR oV R W= O

100
150
- 200
250
300
400
500
550
1000

Frequency
7227
44
254
55
12
492
14
19
28
6
573
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v—au-m-t\)r—ac\mgt—-ﬂr—-.hu—dl\)u—a

Percent
73.87
0.45
2.60
0.56
0.12
5.03
0.14
0.19
0.29
0.06
5.86
0.04
0.32
0.06
0.07
1.83
0.02
0.02
3.01
0.01
0.01
2.48
0.01
0.48
0.08
0.18
0.02
1.36
0.01
0.02
0.01
0.04
0.01
0.01
0.49
0.05
0.06
0.01
0.02
0.01
0.05
0.01
0.01
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Table 3-2. Willingness to Pay for Red Snapper Permit
WTP_RS Frequency Percent WTP_RS  Frequency Percent

0 3343 72.64 210 1 0.02
1 26 0.56 250 2 0.04
2 123 2.67 251 1 0.02
3 29 0.63 1000 1 0.02
4 8 0.17 2000 1 0.02
5 218 4.74
6 6 0.13
7 11 0.24
8 10 0.22
10 281 6.11
11 3 0.07
12 22 0.48
13 7 0.15
14 11 0.24
15 80 1.74
16 3 0.07
17 3 0.07
18 1 0.02
20 160 3.48
21 8 0.17
22 2 0.04
23 2 0.04
24 1 0.02
25 96 2.09
26 3 0.07
30 37 0.80
31 1 0.02
32 1 0.02
35 6 0.13
40 5 0.11
45 1 0.02
50 43 0.93
52 1 0.02
54 2 0.04
55 1 0.02
60 2 0.04
65 1 0.02
- 66 1 0.02
70 1 0.02
75 3 0.07
100 25 0.54
110 1 0.02
150 1 0.02
200 2 0.04
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Table 3-3. Willingness to Pay for Gag Permit
Percent

WTP_G
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100

185

200
1250

Frequency
2776
11
68
7
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97
1
3
17
89
6
4
29
36
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85.57
0.34
2.10
0.22
0.12
2.99
0.03
0.09
0.52
2.74
0.18
0.12
0.89
1.11
0.06
0.03
1.20
0.25
0.09
0.03
0.68
0.03
0.06
0.03
0.40
0.03
0.03
0.03

36



Table 3-4. Why Wouldn't You Pay Any Money?

Doesn't fish for king
mackerel/red snapper/gag
You practice catch and
release

You don't usually catch
the current limit

Limits do not restrict your
catch

The lower limit is
sufficient/don't fish for
them often enough

You don't want to pay any
more to fish than you do
now

You don't know how
much the change is worth
to you

Don't Know

Refused

You don't understand
how the permit would
work

Other

Don't agree with special
permit idea/"unfair"
Don't believe in
restrictions/regulations

WTP_KM WTP_RS
Freq Percent Freq  Percent
4103 56.8 1340 52.5
451 6.2 164 6.4
110 1.5 60 24
82 1.1 26 1
348 4.8 172 6.7
448 6.2 181 7.1
58 0.8 24 0.9
60 0.8 24 0.9
31 0.4 18 0.7
29 0.4 14 0.5
360 5 155 6.1
1048 14.5 345 13.5
99 1.4 28 1.1
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WTP_G
Freq Percent
2225 80.15
84 3.03
20 0.72
11 0.40
37 1.33
119 4.29
13 0.47
14 0.50
1 0.04
5 0.18
79 2.85
150 5.40
18 0.65



Table 3-5. Reaction to Zero Bag Limit for King Mackerel

Keep fishing because
you don't fish for king
mackerel or seldom do
Keep fishing for king
mackerel because you
practice catch and
release

Keep fishing for king
mackerel because the
bag limit doesn't matter
Stop fishing for king
mackerel and fish for
other species

Stop fishing altogether

Other

Fish less for king
mackerel/red
snapper/gag
Don't know

Refused

Totals

1

Gen _Tar=0
RXN Freq Percent
5999  65.85
1097  12.04
348 3.82
| 971 10.66
133 1.46
142 1.56
236 2.59
164 1.80
20 0.22
9110
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Gen_Tar=1
Freq Percent
125 18.57
160  23.77
57 8.47
195 28.97
47 6.98
27 4.01
45 6.69

| 16 2.38

1 0.15

673

Freq
6124

1257

405

1166

180

169

281

180

21

Total
Percent
62.60

12.85

4.14

11.92

1.84

1.73

2.87

1.84

0.21

9783



Table 3-6. Reaction to Zero Bag Limit for Red Snapper
Gen Tar=0 Gen Tar=1 Total
RXN Freq Percent Freq Percent Freq Percent
Keep fishing because 1 2029 63.78 31  20.00 2060 61.75
you don't fish for red
snapper or seldom do

Keep fishing for red 2 364 1144 22 1419 386 11.57
snapper because you

practice catch and

release

Keep fishing for red 3 123 3.87 6 3.87 129  3.87
snapper because the bag

limit doesn't matter

Stop fishing for red 4 398 1251 50 3226 448 1343
snapper and fish for
other species

Stop fishing altogether 5 72 2.26 19 1226 91 2.73

Other 6 65 2.04 7 4,52 72 2.16
Fish less for red 7 75 2.36 13 8.39 88 2.64
snapper

Don't know 8 47 1.48 7 4.52 54 1.62
Refused 9 8 0.25 0 0.00 8 0.24

Totals 3181 155 3336

39



Table 3-7. Reaction to Zero Bag Limit for Gag '
Gen_Tar=0  Gen Tar=1 Total
RXN Freq Percent Freq Percent Freq Percent
Keep fishing because 1 1923  66.11 11 3793 1934 65.83
you don't fish for gag or
seldom do

Keep fishing for gag 2 302 10.38 2 690 304 10.35
because you practice
catch and release

Keep fishing for gag 3 157 5.40 3 1034 160 545
because the bag limit
doesn't matter

Stop fishing for gagand 4 268  9.21
fish for other species

)

24.14 275 9.36

Stop fishing altogether 5 55 1.89 2 6.90 57 1.94

Other : 6 68 2.34 1 3.45 69 2.35

Fish less for gag 7 44 1.51

(9%

10.34 47 1.60

Don't know 8 86 2.96 0 0.00 86 2.93
Refused 9 6 0.21 0 0.00 6 0.20
Totals 2909 29 2938
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Table 3-8. Willingness to Pay Outliers
Species WTP GENTAR BAGCHG TRIPS FFDAYS12 SUCEXP INCOME RXN

KM 150 0 3 4 5 . 52.5 5
KM 150 0 2 3 3 . 30 4
KM 150 0 3 7 20 . 30 3
KM 150 0 1 26 30 . 20 1
KM 150 1 1 1 5 1 112.5 3
KM 200 0 3 15 100 . 67.5 3
KM 200 0 2 10 30 . 30 3
KM 200 0 1 4 32 . 30 1
KM 200 0 1 6 12 . 30 7
KM 200 0 1 10 20 . 112.5 4
KM 200 0 2 1 15 . 52.5 2
KM 250 0 2 2 20 . 30 1
KM 300 0 2 1 0 . 52.5 1
KM 300 0 2 6 3 . 52.5 1
KM 400 0 2 1 5 . 30 1
KM 500 0 1 9 36 . 40 1
KM 500 1 2 14 30 0 200 4
KM 500 0 1 12 12 . 67.5 8
KM 500 0 2 2 7 . 20 1
KM 500 0 2 1 6 . 200 1
KM 550 0 2 1 25 . 30 1
KM 1000 1 1 3 32 0 87.5 4
RS 110 0 2 1 0 . 162.5
RS 150 1 4 1 5 1 112.5 .
RS 200 0 4 20 76 . 112.5 6
RS 200 0 4 1 15 . 52.5 2
RS 210 0 3 2 12 . 30
RS 250 0 5 12 25 . 52.5 .
RS 250 1 3 4 31 1 87.5 4
RS 251 0 3 5 120 . 40 5
RS 1000 1 2 15 150 1 30 6
RS 2000 0 4 6 20 . 40 .
G 185 0 2 25 6 . 30 3
G 200 0 2 20 32 . . 112.5 .
G 1250 0 2 30 12 . 20 3
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Table 3-9. Willingness to Pay by State, Wave, and Bag Change

State

Alabama
Florida (E)
Florida (W)
Georgia
Louisiana
Mississippi
North Carolina
South Carolina
Kruskal-Wallis

Wave

— N U N

Kruskal-Wallis

Bag Change
1 ,
2

3

4

5

Kruskal-Wallis

King Mackerel
Mean N
3.96 372
5.07 1728
4.35 3818
8.03 232
1.96 1155
4.60 2901
6.04 1443
7.67 744
144.87
Mean N
4.82 1426
5.94 1940
5.52 1513
4.33 1977
3.58 1845
4.44 1082
56.25
Mean N
4.40 4599
4.96 4385
5.91 799
15.76

Red Snapper
Mean N
7.47 359
5.23 2845
3.91 1107
7.26 287

24.69

Mean N
5.94 715
5.04 846
8.49 643
3.99 892
3.74 852
5.00 650

21.33

Mean N
2.65 915
5.17 889
491 920
8.60 913
476 - 961

40.46

42

Gag
Mean

2.88
2.57

7.19

Mean
3.59
2.94
4.64
0.00
0.00
3.42
196.04

Mean
2.17
4.32
2.22
1.69
2.96
8.82

N

1389
1855

566
725
661
362
483
447

635
687
699
591
632



Table 3-10. Weighting the Data

AMES=0
Days Fished Freq  Percent

0 6164 12.96

1 3974 8.36
2-3 5292 11.13
4-6 4696 9.87
7-13 5893 12.39
14-24 5081 10.68
25-39 4444 9.34
40-51 3961 8.33
52-100 3694 7.77
100+ 4360 9.17
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AMES=1
Freq  Percent
942 8.76
442 4.11
793 7.37
869 8.08
1134 10.54
1755 16.31
1457 13.54
1228 11.41
918 8.53
1220 11.34

Weight
1.48
2.03
1.51
1.22
1.18
0.65
0.69
0.73
0.91
0.81



Table 3-11. Data Summary '
Unweighted Weighted

Variable Label Mean Std. Dev. Mean Std. Dev.
GENDER male=1, female =0 0.88 0.32 0.88 0.33
WHITE white = 1, non-white =0 0.91 0.29 0.91 0.29
YRSFISH  years fished from AMES 21.30 1489 2074 1494
YRSFISHSQ yrsfish squared 67547 814.76 653.18 810.12
BOATOWN if household owns boat 0.58 0.49 0.54 0.50
TRAVEXP travel expenses ' 42.52 19396 51.28 217.80
INCOME  household income 48.08 32.11 48.76 3192
ENFORCE =1 if ever seen an enforcement officer 0.72 0.45 0.69 0.46
MODE2 =1 if private/rental boat 0.60 0.49 0.56 0.50
MODE3 =] if shore 0.29 0.45 0.30 0.46
NC =] if North Carolina 0.15 0.36 0.17 0.37
SC =] if South Carolina 0.08 0.26 0.08 0.27
GA =1 if Georgia 0.02 0.15 0.03 0.17
FL E =] if Florida South Atlantic 0.18 0.38 0.16 0.37
FL W =] if Florida Gulf 0.39 0.49 0.37 0.48
AL =1 if Alabama 0.04 0.19 0.04 0.20
MS =] if Mississippi 0.03 0.17 0.03 0.17
LA =] if Louisiana 0.12 0.32 0.11 0.32

Cases 10,758
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Table S-1. Probit Participation Models

CONSTANT
GENDER
WHITE
YRSFISH
YRSFISHSQ
BOATOWN
TRAVEXP
INCOME
MODE2
MODE3

NC

SC

GA

FL E

AL

MS

LA

Log-L

Cases

King Mackerel
Coefficient t-value
-2.147 -16.098
0.324 4.184
0.190 2.049
0.013 2.976
-0.000 -2.628
0.136 2.926
-0.000 -1.254
0.003 4.247
-0.178 -2.937
-0.492 -6.998
0.232 3.780
0.314 4.515
-0.356 -2.188
0.101 1.715
0.592 7.289
-0.227 -1.548
-0.683 -6.612
-2262.50
9783
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Red Snapper
Coefficient t-value
-1.574 -7.880
0.057 0.509
0.134 0.937
-0.001 -0.115
-0.000 -0.064
-0.182 -2.376
-0.001 -1.876
0.001 1.295
-0.546 -6.011
-0.634 -5.864
0.972 10.724
0.666 5.692
0.175 1.902
-765.07
4598

Gag
Coefficient t-value
-3.579 -6.725
0.390 1.279
0.312 0.866
0.055 2.670
-0.001 -2.574
-0.134 -0.889
0.000 1.021
0.002 1.102
0.240 1.114
0.312 1.365
-0.318 -2.078
-176.13
3244



Table 5-2. King Mackerel Tobit Regression Models :
Full Data : Trimmed Data

Coefficient t-value Coefficient t-value
CONSTANT -51.73 -19.25 -19.85 -15.07
BAGCHG 8.87 5.49 3.37 4.21
ZERO -9.86 -4.67 -3.03 -2.92
PROB 58.78 3.74 52.80 6.75
TRAVEXP 0.00 1.10 0.00 0.91
INCOME 0.05 2.28 0.01 0.92
ENFORCE 1.94 1.34 0.81 1.14
BOATOWN -4.11 -2.95 -2.09 -3.08
SCALE 48.56 22.99
Log-L _ -16474.50 -14074.07
Cases 9783 8147
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Table 5-3. King Mackerel Heckman Regression Models

Full Data Trimmed Data
Probit Coefficient t-value Coefficient t-value
CONSTANT -0.70 -10.52 -0.66 -9.40
GENDER 0.07 1.56 0.13 2.89
WHITE 0.07 1.37 0.06 1.00
BOATOWN -0.05 -1.74 0.01 0.20
INCOME 0.00 2.95 0.00 3.40
GULF -0.18 -6.64 -0.19 -6.52
Log-L -5587.62 -5008.88
Cases 9783 8217
OLS
CONSTANT 71.53 2.47 7.91 0.91
BAGCHG 4.63 2.30 2.18 3.17
ZERO -8.23 -3.21 -3.13 -3.57
PROB 9.50 0.56 10.57 1.70
ENFORCE 2.06 1.27 -0.48 -0.87
INVMILLS -92.76 -2.15 6.13 0.46
F-value 5.768 3.80
R? 0.01 0.01

Cases 2556 2486
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Table 5-4. King Mackerel Double Hurdle Regression Models

Full Data Trimmed Data

Coefficient  t-value  Coefficient  t-value
CONSTANT -70.11 -4.99 -62.85 -4.45
BAGCHG 18.32 2.30 15.18 1.93
ZERO -31.60 -2.94 -27.88 -2.61
TRAVEXP -0.03 -1.05 -0.02 -0.98
INCOME 0.20 2.15 0.17 1.81
ENFORCE 4.74 0.57 4.12 0.49
BOATOWN 2.73 0.36 5.28 0.70
SCALE 72.21 71.25
Log-L -1609.30 -1577.26
Cases 673 634
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Table 5-5. Red Snapper Tobit Regression Models

Full Data Trimmed Data

Coefficient t-value Coefficient t-value
CONSTANT -74.14 -14.83 -27.47 -13.24
BAGCHG 7.21 5.58 3.28 6.12
ZERO -16.38 -3.72 -5.67 -3.11
PROB 29.59 1.40 31.37 3.50
TRAVEXP 0.00 0.10 0.00 0.24
INCOME 0.16 4.00 0.07 4.15
ENFORCE 342 1.18 1.88 1.58
BOATOWN -10.53 -3.82 -3.43 -3.01
SCALE 66.44 27.13
Log-L -8454.03 -7289.75
Cases 4598 4062
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Table 5-6. Red Snapper Heckman Regression Models

Full Data Trimmed Data
Probit Coefficient t-value Coefficient t-value
CONSTANT -0.63 -6.69 -0.56 -5.72
GENDER 0.00 . 0.01 0.02 0.37
WHITE 0.01 0.14 0.00 0.06
BOATOWN -0.22 -5.33 -0.19 -4.45
INCOME 0.00 5.05 0.00 4.72
Log-L -2686.02 -2498.77
Cases 4598 4062
OLS
CONSTANT 1.84 0.05 10.64 0.92
BAGCHG 3.34 2.03 1.74 3.57
ZERO -9.32 -1.71 -2.67 -1.65
PROB 23.15 0.89 13.70 1.79
ENFORCE 4.52 1.29 1.77 1.70
INVMILLS 5.92 0.10 -2.94 -0.16
F-value 1.34 4.18
R2 0.0053 0.02
Cases 1255 1245
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Table S-7. Red Snapper Double Hurdle Regression Models

Full Data Trimmed Data

Coefficient t-value Coefficient t-value
CONSTANT -83.12 -0.01 . -18.58 -2.19
BAGCHG 9.55 0.10 4.17 1.80
ZERO -72.61 -0.01 -17.19 -1.96
TRAVEXP -0.39 -2.60 -0.10 -2.17
INCOME 0.24 4.10 0.04 0.62
ENFORCE 8.00 0.13 1.22 0.23
BOATOWN -5.71 -0.18 11.94 2.25
SCALE 115.38 28.68
Log-L -581.79 -443.05
Cases 202 151
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Table 5-8. Gag Tobit Regression Models

Full Data Trimmed Data

Coefficient t-value Coefficient t-value
CONSTANT -86.29 -9.25 -32.52 -8.50
BAGCHG -6.97 -2.88 -2.51 -2.54
ZERO 23.13 2.68 10.62 3.03
PROB 394.75 1.08 139.74 0.95
TRAVEXP -0.01 -0.82 -0.00 -0.80
INCOME -0.16 -2.20 -0.05 -1.65
ENFORCE 4.18 0.78 1.63 0.75
BOATOWN 5.08 1.01 1.04 0.51
SCALE 84.70 34.58
Log-L -3288.40 -2902.79
Cases 3244 2972
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Table 5-9. Gag Heckman Regression Models

Probit
CONSTANT
GENDER
WHITE
BOATOWN
INCOME
GULF

Log-L

Cases

OLS
CONSTANT
BAGCHG
ZERO
PROB
ENFORCE
INVMILLS
F-value

R2

Cases

Full Data
Coefficient t-value
-1.04 -7.59
-0.06 -0.73
-0.01 -0.13
0.04 0.69
-0.00 -2.00
0.10 1.78
-1282.24
3244
-106.86 -0.46
-0.58 -0.18
1.32 0.11
-228.81 -0.44
5.36 0.75
178.05 0.54
0.190
0.00
468

Trimmed Data

Coefficient

-0.99
-0.05
-0.03
0.05

-0.00
0.11

-1236.85

2972

-57.23
0.64
3.53
-59.90
-0.65
101.13
1.59
0.02
465
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t-value
-7.16
-0.56
-0.30
0.93
-2.04
1.93

-1.00
0.70
1.06

-0.41

-0.33
1.24



Table 5-10. Gag Double Hurdle Regression Models '
Full Data Trimmed Data

Coefficient t-value Coefficient t-value

CONSTANT -21.85 -1.32 -27.55 -1.45
BAGCHG 6.43 1.33 7.03 1.33
ZERO -15.43 -1.14 -18.02 -1.30
TRAVEXP -0.12 -0.75 -0.04 -0.14
INCOME -0.00 -0.06 0.08 0.68
ENFORCE -6.65 -0.97 -3.50 -0.53
BOATOWN 4.29 0.62 7.16 1.09
SCALE 13.54 12.17

Log-L -42.47 -39.80

Cases 35 28

54



Table 5-11. King Mackerel Tobit Regression Models with State
Interactions

Full Data Trimmed Data
Coefficient t-value .  Coefficient t-value

CONSTANT -59.22 -12.04 -22.59 -9.36
BAGCHG*AL 10.55 . 2.05 2.98 1.18
BAGCHG*FL _E 21.89 4.78 8.85 3.93
BAGCHG*FL_W 18.35 4.05 7.25 3.26
BAGCHG*GA 18.19 5.43 6.90 4.13
BAGCHG*LA 7.05 1.47 1.48 0.63
BAGCHG*MS 16.79 3.26 6.27 2.49
BAGCHG*NC 12.52 4.25 4.92 3.39
BAGCHG*SC 14.85 4.92 5.51 3.71
ZERO -18.47 -4.00 -6.38 -2.80
PROB 42.23 1.85 43.30 3.86
TRAVEXP 0.00 1.36 0.00 1.00
INCOME 0.06 2.41 0.01 1.20
ENFORCE 2.39 1.65 0.95 1.35
BOATOWN -3.84 -2.63 -1.89 -2.66
SCALE 48.34 22.86
Log-L -16422.99 -14022.64
Cases 9783 8147
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Table 5-12. Red Snapper Tobit Regression Models with
State Interactions

Full Data ' Trimmed Data

Coefficient t-value Coefficient t-value
CONSTANT -78.35 -15.04 -28.53 -13.28
BAGCHG*AL 1.96 0.89 1.58 1.68
BAGCHG*FL_W 8.46 6.31 3.54 6.39
BAGCHG*LA 542 3.67 2.86 4.70
BAGCHG*MS 8.16 4.23 4.13 5.08
ZERO -16.21 -3.68 -5.62 -3.09
PROB 92.91 2.93 48.24 3.62
TRAVEXP 0.00 0.20 0.00 0.38
INCOME 0.14 3.48 0.06 3.83
ENFORCE 4.39 1.51 2.12 1.77
BOATOWN -8.41 -2.98 -2.97 -2.55
SCALE 66.35 27.09
Log-L -8443.85 -7284.24
Cases 4598 4062
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Table 5-13. Option Price to Avoid a One-Fish Bag Decrease

Tobit Heckman Double Hurdle
King Mackerel Full Data Trimmed Full Data Trimmed Full Data Trimmed
Mean 1.96 0.72 4.63 2.18 5.28 4.53
Lower 95% C.I. 1.26 0.39 0.68 0.83 0.79 -0.08
Upper 95% C.I. 2.65 1.06 8.58 3.53 9.77 9.14
Red Snapper
Mean 1.63 0.74 3.34 1.74 2.62 1.44
Lower 95% C.L 1.06 0.50 0.11 0.79 -1.99 -0.13
Upper 95% C.1 2.20 0.97 6.57 2.70 7.23 3.01
Gag Grouper
Mean -0.91 -0.33 -0.58 0.64 1.40 1.80
Lower 95% C.L -1.53 -0.58 -7.09 -1.16 -0.67 -0.86
Upper 95% C.1. -0.29 -0.08 5.92 2.44 3.47 4.46
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Table 5-14. Option Price to Avoid a One-Fish Bag
Decrease by State

King Mackerel Red Snapper
Alabama Full Data Trimmed Full Data Trimmed
Mean 2.31 0.63 0.44 0.35
Lower 95% C.1. 0.10 -0.42 -0.53 -0.06
Upper 95% C.I. 4.51 1.68 1.41 0.77

Florida East

Mean 4.79 1.88
Lower 95% C.I 2.82 0.94
Upper 95% C.1. 6.75 2.81

Florida West

Mean 4.01 1.54 1.90 0.79
Lower 95% C.L 2.07 0.61 1.31 0.55
Upper 95% C.L 5.95 2.46 2.49 1.04

Georgia

Mean 3.98 1.47
Lower 95% C.L 2.54 0.77
Upper 95% C.1. 5.41 2.16

Louisiana

Mean 1.54 0.31 1.22 0.64
Lower 95% C.I -0.52 -0.66 0.57 0.37
Upper 95% C.I. 3.60 1.29 1.87 0.91
Mississippi

Mean 3.67 1.33 1.83 0.93

Lower 95% C.I. 1.47 0.28 0.99 0.57
Upper 95% C.L 5.88 2.38 2.68 1.28

North Carolina

Mean 2.74 1.04
Lower 95% C.L 1.47 0.44
Upper 95% C.1. 4.00 1.65

South Carolina

Mean 3.25 1.17
Lower 95% C.I. 1.95 0.55
Upper 95% C.IL 4.54 1.79



Table 6-1. Bivariate Tobit Models
King Mackerel
Independent Tobits Bivariate Tobit
Coeff. Stan. Err.  Coeff. Stan. Err.

Constant/Sigma -1.04 0.09 -0.95 0.08
Bag_al/Sigma -0.18 0.09 -0.13 0.07
Bag fl w/Sigma 0.04 0.05 0.03 0.04
Bag_la/Sigma -0.19 0.06 -0.16 0.05
Bag_ms/Sigma 0.06 0.07 0.06 0.06
(Prob*100)/Sigma 0.02 0.01 0.01 0.01
(Trav_exp/100)/Sigma  0.01 0.01 0.01 0.01
(Income/100)/Sigma 0.16 0.08 0.15 0.07
Enforce/Sigma 0.11 0.06 0.09 0.05
Boatown/Sigma -0.06 0.05 -0.06 0.04
In(1/sigma) -3.86 0.00 -4.17 ~ 0.01
Red Snapper

Independent Tobits Bivariate Tobit
Coeff.  Stan. Err. Coeff. Stan. Err.

Constant/Sigma -1.21 0.09 -1.07 0.08
Bag_al/Sigma 0.05 0.04 0.04 0.04
Bag_fl_ w/Sigma 0.13 0.02 0.09 0.02
Bag_la/Sigma 0.08 0.03 0.05 0.02
Bag_ms/Sigma 0.13 0.04 0.10 0.03
Zero_Bag/Sigma -0.29 0.08 -0.21 0.07
(Prob*100)/Sigma 0.01 0.01 0.01 0.01
(Trav_exp/100)/Sigma 0.01 0.02 0.00 0.01
(Income/100)/Sigma 0.21 0.07 0.20 0.06
Enforce/Sigma 0.08 0.06 0.07 0.05
Boatown/Sigma -0.11 0.05 -0.11 0.05
In(1/sigma) -4.35 0.00 -4.46 0.00
Correlation 0.00 0.57
Log-L -14805.17 -14474.1
Observations 4447 4447
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Table 6-2. Random Effects Tobit Models

Constant/Sigma
Bag_al/Sigma -

Bag fl_w/Sigma
Bag_la/Sigma

Bag ms/Sigma
(Prob*100)/Sigma
(Trav_exp/100)/Sigma
(Income/100)/Sigma
Enforce/Sigma
Boatown/Sigma
In(1/sigma)

Constant/Sigma
Bag_al/Sigma
Bag_fl w/Sigma
Bag_la/Sigma
Bag_ms/Sigma
Zero_Bag/Sigma
(Prob*100)/Sigma
(Trav_exp/100)/Sigma
(Income/100)/Sigma
Enforce/Sigma
Boatown/Sigma
In(1/sigma)
Correlation

Log-L

Observations

King Mackerel

Random Effects Tobit 1 Random Effects Tobit 2

- Coeft. Stan. Err. Coeff. Stan. Err.
-0.95 0.07 -0.95 0.07
-0.10 0.07 -0.11 0.07
0.04 0.03 0.04 0.03
-0.15 0.04 -0.15 0.05
0.05 0.06 0.05 0.06
0.01 0.01 0.01 0.01
0.00 0.01 0.00 0.01
0.17 0.05 0.14 0.07
0.08 0.04 0.08 0.05
-0.05 0.04 -0.06 0.04
-4.38 0.00 -4.38 0.00

Red Snapper '

Random Effects Tobit 1 Random Effects Tobit 2

Coeff. Stan. Err. Coeff. Stan. Err.
-1.04 0.07 -1.05 0.07
0.04 0.04 0.04 0.04
0.09 0.02 0.09 0.02
0.05 0.02 0.05 0.02
0.10 0.03 0.10 0.03
-0.21 0.06 -0.21 0.06
0.01 0.01 0.01 0.01
0.00 0.01 0.00 0.01
0.17 0.05 0.20 0.06
0.08 0.04 0.07 0.05
-0.11 0.04 -0.11 0.04
-4.38 0.00 -4.38 0.00

0.60 0.60
-14515.54 -14515.01
4447 4447
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Table 6-3. Bivariate Tobit Option Prices

—
King Mackerel
Alabama -1.71
Florida_West 0.38
Louisiana -1.77
Mississippi 0.56

61

Red Snapper

0.81
2.17
1.28
2.16



Table 6-4. Joint Participation and Willingness to Pay Model

CONSTANT
GENDER
WHITE
BOATOWN
INCOME
TRAVEXP
MODE2
MODE3

AL

FL_E

GA

LA

MS

NC

SC
YRSFISH
YRSFISH2

CONSTANT
BAG_AL
BAG_FLE
BAG_FLW
BAG_GA
BAG LA
BAG_MS
BAG_NC
BAG_SC
ZERO

PROB
TRAVEXP
INCOME
ENFORCE
BOATOWN
LN(1/SIGMA)
CORRELATION
LOG-L
CASES

62

King Mackerel
Independent Models Joint Model
Probit Participation Model
Coefficient  t-value  Coefficient  t-value

-2.15 -17.90 -2.12 -19.07
0.32 4.44 0.32 478
0.19 2.15 0.21 2.52
0.14 3.05 0.18 4.30
0.25 4.29 0.23 422
-0.01 -1.14 -0.02 -1.44
-0.18 -3.40 -0.18 -3.98
-0.49 -7.88 -0.42 -7.23
0.59 7.97 0.54 7.69
0.10 1.68 0.07 1.18
-0.36 -2.39 -0.25 -1.70
-0.68 -7.54 -0.66 -7.25
-0.23 -1.45 -0.24 -1.56
0.23 4.05 0.22 4.05
0.31 4.76 0.28 4.52
1.30 3.00 0.72 1.98
-0.21 -2.64 -0.21 -3.04

Tobit Willingness to Pay Model

Coefficient  t-value  Coefficient  t-value

-1.23 -14.01 -1.30 -14.23
0.22 2.32 0.12 1.18
0.45 5.38 0.47 5.47
0.38 4.56 0.40 4.72
0.38 6.54 0.41 6.79
0.15 1.63 0.23 2.47
0.35 3.56 0.40 3.96
0.26 4.89 0.26 4.86
0.31 5.68 0.29 5.19
-0.38 -4.50 -0.40 -4.62
0.01 1.91 0.03 - 4.77
0.01 1.29 0.01 1.56
0.12 2.73 0.03 0.58
0.05 1.65 0.05 1.61
-0.08 -2.63 -0.13 -3.85
-3.88 -1369.63 -3.88 -309.14

0.00 -0.12 -2.94

-18685.50 -18673.30
9783 9783



Table 6-5. Joint Participation and Willingness to Pay Model

Red Snapper
Independent Models Joint Models
Probit Participation Model
Coefficient t-value Coefficient t-value
CONSTANT -1.57 -8.66 -1.61 -9.21
GENDER 0.06 0.60 0.10 1.11
WHITE 0.12 0.92 0.10 0.76
BOATOWN -0.19 -2.78 -0.17 -2.49
INCOME 0.14 1.38 0.11 1.15
TRAVEXP -0.05 -1.45 -0.05 -1.44
MODE2 -0.53 -6.66 -0.55 -7.17
MODE3 -0.61 -6.61 -0.60 -6.80
AL ! 0.96 12.32 0.91 11.94
GA 0.17 1.99 0.16 1.84
LA 0.66 6.12 0.64 6.10
MS -0.06 -0.10 0.22 0.37
YRSFISH -0.01 -0.12 -0.11 -0.98
YRSFISH2 -0.21 -2.64 -0.21 -3.04

Tobit Willingness to Pay Model
Coefficient t-value Coefficient t-value

CONSTANT -1.18 -14.44 -1.20 -14.17
BAG_AL 0.03 0.76 0.02 0.61
BAG_FLW 0.13 5.87 0.13 5.74
BAG_GA 0.08 3.37 0.08 331
BAG LA 0.12 3.81 0.12 3.62
BAG_MS -0.24 -3.30 -0.24 -3.20
ZERO 0.01 2.71 0.02 3.10
PROB 0.00 0.20 0.00 0.26
TRAVEXP 0.21 3.08 0.21 2.87
INCOME 0.07 1.38 0.07 1.45
ENFORCE -0.12 2.72 -0.12 -2.47
BOATOWN -4.19 -1929.81 -4.19 -1336.52
LN(1/SIGMA) -3.88 -1369.63 -3.88 -309.14
CORRELATION 0.00 -0.10 - -1.57
LOGL -9249.40 -9245.30
CASES 14598 4598
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Table 6-6. King Mackerel Option Prices:

Joint Participation/WTP Model

Alabama
Florida East
Florida West
Georgia
Louisiana
Mississippi
North Carolina
South Carolina

Tobit
$2.29
$4.76
$3.99
$3.95
$1.53
$3.65
$2.72
$3.23

Joint Model

$1.24
$4.94
$4.19
$4.31
$2.38
$4.17
$2.74
$3.03
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